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Abstract

We present a deep latent variable model for high dimensional sequential data. Our
model factorises the latent space into content and motion variables. To model the
diverse dynamics, we split the motion space into subspaces, and introduce a unique
Hamiltonian operator for each subspace. The Hamiltonian formulation provides
reversible dynamics that learn to constrain the motion path to conserve invariant
properties. The explicit split of the motion space decomposes the Hamiltonian
into symmetry groups and gives long-term separability of the dynamics. This
split also means representations can be learnt that are easy to interpret and control.
We demonstrate the utility of our model for swapping the motion of two videos,
generating sequences of various actions from a given image and unconditional
sequence generation.

1 Introduction

The ability to learn to generate artificial image sequences has diverse uses, from animation, key frame
generation, summarisation to restoration and has been explored in previous work over many decades
[1, 2, 3, 4, 5]. However, learning to generate arbitrary sequences is not enough; to provide useful
value, the user must be able to have control over aspects of the sequence generation, such as the
motion being enacted, or the characteristics of the agent doing an action. To enable this, we must be
able to learn to decompose image sequences into content and motion characteristics such that we can
apply learnt motions to new objects or vary the types of motions being applied.

The dynamical processes creating the evolution of image sequences are highly constrained. Consider
the simplistic case of a person walking in a scene with a camera moving around that individual.
The walking pose will return to similar positions periodically, and likewise, the revolving camera
will revisit previous positions. Even without strict periodicity, many dynamical processes are
reversible. Any time that a dynamic could conceivably return to an earlier position suggests an
implicit conservation law–the conservation of information in the underlying scene generator as it
must be capable of returning to and regenerating the same scene with non-negligible probability. The
critical observation we wish to capture in this paper is that understanding the conservation occurring
in the context of a set of sequences is a vital ingredient to decompose content from motion.

Given any conserved quantity, any motion must be modelled in a way that maintains the conserved
quantity. In physics, such a motion is called a Hamiltonian motion; it keeps the corresponding
Hamiltonian function constant. Hence we argue that a flexible latent Hamiltonian model allows us to
learn a representation that enables conservation of the right quantities (which are themselves learnt)
and models the dynamic evolution. This is mathematically equivalent to learning to represent the
underlying motions as combinations of differentiable symmetry groups; all differentiable symmetry
transformations follow a conservation law [6].
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Identifying fundamental symmetries is essential for developing expressive deep generative models
(DGMs) that understand the motion constraints and can generalise beyond the training data [7, 8].
Existing DGMs [9, 10, 11] for sequences using RNNs suffer because they lack such constraint,
and accumulate errors as the length of the sequence grows, ending up deviating from the relevant
path [12, 13, 14, 15].

In this paper, we intimate the more general applicability of latent Hamiltonian model; previous
applications have been limited to fairly constrained physical systems. We propose a VAE framework
to model the dynamics of sequences using a collection of Hamiltonian operators. Specifically, for
any motion sequence, we model the transition from time step t to step t + 1 using a group action
of a Hamiltonian operator. The evolution of the dynamics of a sequence leaves certain information
unchanged, identified as content, and certain properties that evolve in conjunction known as motion.
Since different image sequences involve the evolution of various actions, we split the motion space
into subspaces where each subspace is to model a unique action and is unaffected by other actions.
We focus in this paper on a discrete, identified set of actions, that we can then compose at generation
time. However this could be extended to learning from action compositions themselves in further
work. Our main contributions are as follows,

• We propose learnable Hamiltonian operators which associate conserved quantities with latent
dynamics. In contrast to existing Hamiltonian approaches, usually restricted to constrained physical
systems, we extend the formulation to more natural image sequences. Furthermore, the explicit
form of operator imposes the structure in the motion latent space. In this way, we simultaneously
learn a structured representation along with symmetry transformations that act on the space.

• The high dimensional sequences are composed of various motions; therefore, we model each action
in a separate subspace that further allows the separability of dynamics. It reduces the computational
cost since the Hamiltonian of the whole space is now in a block diagonal form where each block is
a Hamiltonian of a symmetry subgroup.

• We empirically demonstrate several benefits of our model, i) generation of diverse dynamics from
a starting frame, ii) useful notion of disentanglement where the content representation is separated
from motion representation and where each motion subspace only controls a single action, iii) we
demonstrate its use for motion swapping as well as unconditional sequence generation.

2 Related Work

Hamiltonian Neural Networks In recent years, several deep learning (DL) methods have been
proposed to learn the dynamics of physical systems using Hamiltonian mechanics. In [16], authors
use NNs to predict Hamiltonian from phase-space coordinates s = (p,q) and their derivatives. A
similar work [17] used NNs to discover symmetries of Hamiltonian mechanical systems. Much
recently, Hamiltonian NNs are used for simulating complex physical systems [18, 19]. The key
idea of this work is to represent the states of particles as a graph and use a graph neural network
(GNN) to predict the change from the current state to the next state. In a follow-up [20], authors
introduce sparsity on the messages in a graph and use the symbolic regression method to search for
physical laws that describe the messages in the graph. In a very recent work, Hamiltonian generative
network (HGN) [8] proposed to learn Hamiltonian from image sequences. HGN maps a sequence to
a latent representation and then projects it to the phase space to unroll the dynamics using an ODE
integrator with Hamilton’s equation. In another work [14] use second-order ODE parameterised as a
BNN for modelling dynamics of high dimensional sequence data in the latent space of VAE. Most
of the developments are built on neural ODE [21] an idea to view layers of NNs as internal states
of an ODE. These methods rely on the numerical integration scheme and the stability of the ODE
solver. A Hamiltonian formalism is an additional requirement that the dynamics of an ODE should
be volume-preserving and reversible.
Latent Space Models There is a long history of latent state space models for modelling se-
quences [22, 23, 24, 25, 26]. Much recently, these methods are combined with DGMs for generating
high dimensional sequences as well as learning disentangled representation [12, 9, 27, 28, 29].
MoCoGAN [9] developed an adversarial framework of combining a random content noise with a
sequence of random motion noise to generate videos. More recently, DSVAE [27] proposed to split
latent space into time-variant and invariant representation and use LSTM [30] to model the prior
on time-variant representation. S3VAE [29] improves disentanglement of DSVAE by minimising a
mutual information loss between content and motion variables. Some Hamiltonian methods [8, 14]
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Figure 1: A framework of our model. We first map a sequence to the representation h1:T . Next,
to unroll the dynamics of an action k, we map the encoded representation to the phase space.
Specifically, we sample a starting index t and map ht to position coordinate qkt . For momentum pkt ,
we use temporal convolution with a kernel size w on ht:t−w. We then use the operator Hk to trace
out the forward and backward trajectory. We finally combine the position q1:T and the content z to
generate the sequence.

also model the dynamics of high dimensional sequential data in latent space. However, the focus is
only on sequence generation, and to our knowledge, it has not been used for disentanglement.
Group Transformations in Latent Space Models The early work of [31] proposed the algorithm
to model the infinitesimal movement on data manifold using learnable Lie group operators. In [32],
use the matrix exponents to learn the transport operators for modelling the manifold trajectory. Many
other similar methods have investigated the use of geometric operators for learning the manifold
representation from data [31, 32, 33, 34, 35]. The use of symmetries has recently got some attention
for learning disentangled factor of variations. A disentanglement is generally identified as learning
representations with independent latent factors. The main goal is that each latent factor should control
a distinct data factor, and a single latent variable should control no two data factors [36, 37, 38]. In [7],
proposed a symmetry-based definition of disentanglement. The goal was to decompose latent space
into subspaces, and on each subspace, learn a unique group transformation such that the subspace
is unchanged by the action of other groups. In [39], build such a model using interaction with the
environment. Some other similar approaches recently proposed to learn group transformations in
latent space [40, 41, 42]. However, the application is restricted to toy problems and to our knowledge
has not been investigated on high dimensional videos.

3 Method

We propose a deep latent variable model for sets of sequential image data. Each set of sequences
depicts the temporal evolution associated with one of a number of actions. In this context an action is
simply a label associated with a particular sequence set, but where it is understood the sequences
within a set may have very different content, but same correspondence of dynamic. E.g. in sprites
data (discussed later) the actions are ‘walking’, ‘spell cast’ and ‘slash’. The sequences within a set
are different individuals performing the relevant action.

Let xi1:T denote the ith image sequence, with xit the tth image in the sequence. Let ui be an indicator
vector denoting the action associated with the ith sequence; i.e. uik = 1 iff sequence i follows action
k and uik = 0 otherwise. These sequences and corresponding actions are collected into a dataset
{(xi1:T ,ui)}Ni=1 of size N , where, for the sake of simplicity, we assume they all are of same length T .

In this paper, we use a latent space to aid modelling of each sequence and decompose that latent
space into two parts, which we call a content space (denoted by Z) and a motion space (denoted
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by S). As the data comprises sequences of various actions that take different dynamical form, we
further decompose the latent motion space S = S1 ⊕ S2 ⊕ . . .⊕ SK , with one part for each action.
In modelling a sequence corresponding to action k, only the subspace Sk will be allowed to change
across the length of that sequence. Each motion subspace is further decomposed into generalised
position and momentum parts: Sk = (pk,qk). Only the position part of this latent space is used
generatively to create an individual image. The momentum part only affects the dynamics.

Critical to this work, this decomposition makes it straightforward to define learnable Hamiltonian
mechanics to model the dynamic process. This Hamiltonian model provides many advantages; it
prevents the neural network from leaking constant content information via the motion representation,
and it ensures the possibility of preserving key conservation quantities that must be implicit there are
many motion dynamics. This is discussed further in Section 3.1.1. The full framework of our model
is illustrated in Figure 1. In the next section, the generative model will be introduced, followed by the
variational formalism for inference and the learning.

3.1 Generative Model

For completeness we first present the full probabilistic model in (3-6) before describing each compo-
nent. The dynamic is defined in terms of an action u; the model is conditioned on this action vector.
First, in (3), we sample the content variable z from a prior p(z). The content variable will describe the
constant appearance characteristics expressed through the whole sequence. Next we sample a starting
position from prior p(qk1), and a momentum from a prior p(pk1). The full state-space representation is
given by sk1 = (pk1 ,q

k
1). We then use our dynamical model in (8) to trace out the forward trajectory in

the phase space. Finally, we combine the position trajectory with the content representation and use a
decoder neural network to get the emission distribution of sequence in the data space. In summary,

GIVEN:k denoting action label for a sequence, (1)
z ∼ p(z) (2)

qk1 ∼ N (0, Id), pk1 ∼ N (0, Id), sk1 = [pk1 ,q
k
1 ] (3)

skt = f(skt−1;ωk, t), ∀t > 1 (4)

sk
′

t = 0, ∀t, k′ 6= k (5)

qt = [q1t , . . . ,q
K
t ], xt ∼ N (xt|φ(z,qt), α2Im), ∀t (6)

where d is the dimensionality of kth subspace, m is the dimensionality of data space, f is a dynamical
model (8) and ωk are its parameters corresponding to the kth subspace. The emission distribution
is a spherical Gaussian, with a parameterised mean φ(·, ·), and a spherical covariance α2Im. In our
work, we choose α = 1. We have provided probabilistic graph of our GM in Appendix 1.

3.1.1 Dynamical Model

In image sequences, we can view each frames of a sequence as a point in some representation
space; the temporal dynamics trace a path connecting the frames forming a 1-submanifold of the
image manifold. Most dynamical models either try to capture this structure deterministically [43]
or probabilistically [44, 45, 27] via linear or non-linear state-space models. In either case, small
errors in dynamical steps can accumulate and result in a significant deviation from the manifold
when unrolling long-term trajectories at inference time [12, 13]. Interestingly, Hamiltonian systems
associate conserved quantities with the motions and, we argue, alleviate some of these issues by
constraining the dynamics to be reversible and volume-preserving. In our work, without significant
loss of generality, we propose a linear Hamiltonian system in the latent layer, relying on the nonlinear
neural network mapping to data space to handle all nonlinear aspects. This also enhances the
interpretability of the dynamics.
Definition 1. A matrix H ∈ R2d×2d is an Hamiltonian matrix if HT JH = J, where J is a skew-

symmetric matrix J =

(
0 Id
−Id 0

)
.

Consider a coordinate vector s ∈ R2d in the phase space S that evolves under Hamiltonian energy E,

E =
1

2
sTM(t)s (7)
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where M(t) is a symmetric matrix and s is a coordinate in phase space at a time t. In Hamiltonian
mechanics, the coordinates are specified in terms of position q and momentum p variables as
s = (q,p). Then the equation of motion is given by, ds(t)

dt = JM(t)s. Let H(t) = JM(t), we can
rewrite the equation of motion as, ds(t)

dt = H(t)s.

For a time-invariant Hamiltonian we can obtain the solution of the system in the closed-form using
matrix exponential s(t) = etHs(0). The matrix exponent has a connection to Lie algebras, and for
small t we can interpret etH as an infinitesimal transformation of s(0) under the group action. We
discuss this further in Appendix A .2. For a detailed introduction to the topic we refer to [46].

In this work, we considerK Hamiltonians of the form H1, ···,HK , each potentially acting on separate
parts of the state space S1,S2, . . .SK . To unroll the trajectory of a sequence i with associated motion
k, we use the group action defined by the matrix exponent of the operator Hk on a starting phase
space representation sk1 ∈ Sk given by,

skt = f(skt−1;ωk, t) = etHkskt , ∀t > 1 (8)

sk
′

t = 0, ∀t, k′ 6= k. (9)

The backward dynamics can simply be obtained by negating time −t. We assume all time steps are
equally spaced. The above formulation provides an explicit disentanglement of the motion space.
It further allows us to parallelise the computation of matrix exponential by leveraging the block
diagonal form of H. To make use of the structure of Hamiltonians, we consider the group of real
Hamiltonian matrices that form a Symplectic Lie group under multiplication Sp(2d) with 2d2 + d
independent elements. We also look at the symplectic orthogonal group SpO(2d) that further restricts
Hamiltonians to skew-symmetric form with (d2 − d)/2 independent elements. We briefly introduce
it in Appendix A .2. For a more comprehensive overview, we refer readers to [47].

3.2 Inference

In order to learn the model parameters, we need to infer the distribution over latent variables; we
follow a variational formalism that provides following evidence lower bound (ELBO),

max
q

Eq(z,s1:T |x1:T ,u) log

[
p(x1:T , z, s1:T |u)
q(z, s1:T |x1:T ,u)

]
(10)

where q(.|.) is the approximate posterior distribution and st = [qt,pt]. It remains to define the
approximate posterior we use. Since the Hamiltonian dynamics are reversible in time, at inference
time, we randomly sample a choice of frame t and use forward and backward dynamics to trace the
trajectory of states after and before that frame. For a sequence x1:T , we use the process in (11)-(14)
to draw samples from a variational distribution q(z, s1:T |x1:T ,u). Simply, we sample the content
variable z conditioned on the observed data and independently sample the motion states skt = [qkt ,p

k
t ]

for the reference frame t conditioned on the observed data and the relevant action k. Motion states
corresponding to other actions are set to zero. The motion states for all the other frames are then
created from the forward and backward application of the Hamiltonian motion for the relevant action.
In equations, this is,

z ∼ q(z|x1:T ), t ∼ U({1, . . . , T}) (11)

qkt ∼ q(qkt |xt,u), pkt ∼ q(pkt |xt−w,u), skt = [qkt ,p
k
t ] (12)

skt+1 = f(skt ;ωk, t), skt−1 = f(skt ;ωk,−t), ∀t (13)

sk
′

t = 0, ∀t, k′ 6= k, (14)

where t is a starting index, q(qkt |xt,u), is the posterior distributions of kth position subspace con-
ditioned on the frame xt, q(pkt |xt:t−w) is the posterior distributions of kth momentum subspace
conditioned on w previous frames and q(zi|xi1:T ) is the posterior distribution of the content space
conditioned on the entire sequence. We parameterise the factorised posterior as a spherical Gaussian
distribution,

qθ1◦θ2
(z|x1:T ) = N (z|µz,σ

2
z I), qγk◦θ2

(qkt |xt,u) = N (qkt |µk
qt
,σ2k

qt
I), (15)

qδk◦θ2
(pkt |xt−w,u) = N (pkt |µk

pt
,σ2k

pt
I) (16)
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where {θ1,θ2,γk, δk} are parameters of encoder neural network. The parameters θ1 are specific
to the content network, γk of the network mapping to the kth position subspace, δk of the network
mapping to the kth momentum subspace and θ2 are shared parameters of content and motion
network. We use reparametrisation trick [48] to sample from latent distribution z = µ+σ� ε where
ε ∼ N (0, I).

3.3 Learning Objective

The final learning problem reduces to the optimisation of the following objective function,

max
θ1,θ2,φ,ωk,γk,δk

−KL[q(qkt |xt,u)||p(qkt )]−KL[q(pkt:t−w|xt,u)||p(pkt )]

−KL[q(z|x1:T ,u)||p(z)] + Eq(qkt |xt,u)

[∑
t′

log p(xt|qt′ , z)
]
. (17)

We have provided the derivation in the Appendix A .1.

4 Experiments

We conduct experiments on the following video datasets, i) Sprites a sequence of animated character
performing different actions as per sprites sheets.1 It comprises three actions: ‘walking’, ‘spell cast’
and ‘slashing’ from three viewing angles: ‘left’, ‘right’ and ‘straight’. The sequences are of length
8 with each frame as an RGB image of size 64 × 64 × 3. The appearance of each character has
four attributes: colour of skin, hairstyle, tops and trousers/pants. Each attribute can take six values
resulting in 1296 unique characters. We used 1000 characters for training and the rest for evaluation.
ii) MUG [49] is a dataset of 52 individual performing six facial expressions: anger, disgust, fear,
happiness, sadness and surprise. The dataset is made available by signing the license agreement
available. The dataset consists sequences of variable length ranging from 50 to 160 frames. For
training purpose, we downsample the sequences by a factor of two and use random subsequence of
length 8, crop face region and resize it to 64× 64. The training and evaluation splits are based on [9].

4.1 Results and Discussion

We perform the qualitative and quantitative analysis of all the models. We investigate two choices
of structure for the Hamiltonian matrices. We refer to the symplectic group structure as H and the
symplectic orthogonal group as skew-H. To compute the matrix exponential, we use fast Taylor
approximation [50] that provides a stable solution under various matrix norms.

Quantitative Evaluation We evaluate our model on sequence generation as well as the disentangle-
ment of representations. As a first step we evaluate the generation of two operators H and skew-H
using the per-frame structural similarity index measure (SSIM) peak signal to noise ratio (PSNR) and
mean squared error (MSE). We generate a longer sequence of length 16 (twice the length used for
training purpose) conditioned on the starting frame. The sprites consists of periodic sequences of
length 8 where the start and end frames are identical, in this case we duplicate the sequence to get a
ground truth of length 16. For MUG, we draw sequence of length 16 from the evaluation set. The
SSIM scores are between −1 and 1, with a more significant score indicating more similarity between
the ground truth and generated sequence. Likewise, higher PSNR and lower MSE implies better
generation. Table 1 describes the performance of our model on generation task under different scores.
The scores show our model can generate high-quality sequences from an input image. For rest of the
paper, we consider only H as it consistently works better at sequence generation. We compare its
performance with the state-of-the-art baselines for sequence disentanglement, namely DSVAE [27],
MoCoGAN[9] and S3VAE [29].

To evaluate the disentanglement, we use a classifier pre-trained on the task of action prediction, to
evaluate the generated sequences. To begin with, we draw a starting position and momentum from a
prior distribution and use a dynamical model to unroll the trajectory in the phase space. Next, we
sample the content variable z from real sequences and combine it with position variables to generate
the sequence. We report the performance of the classifier in predicting the action from these generated

1https://github.com/jrconway3/ Universal-LPC-spritesheet
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Table 1: Evaluation for sequence generation. For SSIM and PSNR higher is better; for MSE lower is
better. We can see both choices of operator can generate sequences close to the ground truth.

Model Dataset SSIM↑ PSNR↑ MSE↓
Sprites 0.982± 0.005 36.76± 1.096 0.0005± 0.0002

H MUG 0.797± 0.003 24.49± 0.099 0.0040± 0.0001

Sprites 0.950± 0.021 33.88± 2.03 0.0026± 0.0012
Skew-H MUG 0.791± 0.003 24.25± 0.094 0.0044± 0.0001

Table 2: Quantitative evaluation of disentanglement and diversity of generated samples
Method Data Accuracy↑ H(y|x)↓ H(y) ↑
Ours H 0.929 0.108 1.778

DSVAE [27] MUG 0.543 0.374 1.657
MoCoGAN [9] 0.631 0.183 1.721

S3VAE [29] 0.705 0.135 1.760

Ours H 0.994 0.011 2.009
DSVAE [27] Sprites 0.907 0.072 2.192

MoCoGAN [9] 0.928 0.090 2.192
S3VAE [29] 0.994 0.041 2.197

(a) Results of classifier on MUG and sprites data. The high score of
accuracy and Inter-Entropy H(y) while low scores of Intra-Entropy
H(y|x) are expected from a better model. Our model performs best
across all three scores on MUG. On sprites we are comparable to
S3VAE. This is due to simplicity of classes in sprites.

Sprites (Attr.) Accuracy↑
Skin Color 0.925

Shirt 0.948
Pant 0.968
Hair 0.992

Identity (MUG) 0.998

(b) Performance of our model in
terms of accuracy of individual
attributes in sprites and identity
of actors in MUG dataset. This
shows our model can preserve
content when the motion represen-
tation is changed.

sequences. This score gives us a measure of how well a model can keep the motion intact with
the modified content variable. We also report intra-Entropy H(y|x) and inter-Entropy H(y) score
using the same classifier to evaluate the diversity of generated sequences. H(y|x) gives a measure
of closeness of generated sequences to the real sequences and H(y) gives a measure of diversity of
generated sequences [51]. The results are reported in part (a) of Table 2. Our model outperforms the
other approaches on the MUG dataset and is comparable with S3VAE on sprites. One reason for the
improvement is that we explicitly associate every action with a unique subspace. This split allows
our model to achieve separability of the dynamics and hence avoids the possibility of any mixing or
ambiguity of action in the motion space. The results on sprites are comparable; we attribute this to
the simplicity of classes in sprites that results in high performance across all models.

We further evaluate our model in preserving the identity of sequences. The identity for sprites is
described in terms of four different attributes, and for MUG [49] it refers to the identity of the person.
We pre-train a classifier on the task of identity prediction and use it for evaluating the generated
sequences. This evaluation gives us a measure of the model’s ability to keep the identity when the
motion is changed. For sprites, we report the accuracy of individual attributes. Results are outlined in
Table 2. We can see on MUG our model can preserve the identity with high accuracy. We can make a
similar observation for different attributes of sprites sequences. Thus, the good performance indicates
that the content is preserved when traversing the motion subspace, and the motion space is invariant
when changing the content variables. This is also reflected in the qualitative results.

Qualitative Evaluation For the qualitative analysis, we report results with the Hamiltonian H. We
observed the skew-H resulted in similar performance; we omit it here due to limited space. To begin
with, Figure 2 gives an example of original, reconstruction and generated sequences. We generate a
sequence by applying the motion operator on the latent encoding of the first time step. On the left are
the results for sprites and on the right of MUG video sequences. To evaluate disentanglement, we use
the model for the task of motion swapping. We start by encoding two sequences x11:T and x21:T to
their latent representations (z1,q11:T ) and (z2,q21:T ), next we swap the motion variables (z1,q21:T )
and (z2,q11:T ) between the two representation spaces, and then pass the resulting representations
through the decoder to generate the sequences x1→2

1:T and x2→1
1:T . Figure 3 shows the result of this.

On the left, the pair of consecutive rows are of original sequences and on the right of the sequences
generated by swapping the motion representations. We can see swapping the motion part does not
affect the identity of the sequences.
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Figure 2: In each patch, the first row is the original sequence, the second row is its reconstruction,
and third row is a sequence generated by an action of the operator on the phase space representation
of the starting time step. On left are results on sprites and on right on MUG. The reconstruction
shows our model can learn good representations and the generation shows the dynamical operator
can generate realistic motions from a starting frame.

Figure 3: Left: original sequence pairs; right: reconstructions after swapping the motion variables in
row pairs. The content space is disentangled from the motion space.

To further investigate the generation quality of different motion operators, we use our model for an
image to sequence generation. We first encode the image to its latent space representation. Next,
we obtain its representation in the different motion spaces and use the respective operators to unroll
the trajectories in phase space for each different motion, which are then combined with content and
transformed to the image space using a decoder network. The left side of Figure 4 shows examples of
decoding different motion from the same input image. For sprites, the actions are in order ‘walk’,
‘spell card’, ‘slash’ and for MUG they are ordered ‘anger’, ‘disgust’, ‘fear’, ‘happiness’, ‘sadness’ and
‘surprise’. We can see the visual dynamics associated with all the operators are well separated from
one another. More results are presented in Appendix A .3.3, where it is apparent that longer-term
sequences maintain the consistency associated with the content-motion pair.

5 Conclusions and Future Work

We introduced a DGM that uses Hamiltonian operators in the latent space to model the manifold of
various motions. We decompose the latent space into content and motion subspace, and for each
action, associate a unique partition in the motion subspace. The dynamics in each partition are
unrolled using a Hamiltonian operator. Our formulation, associates conserved quantities with the
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Figure 4: On left (a) and (c) are examples of image to sequence generated by an action of Hamiltonian
operator on the phase space representation of the starting frame. We can observe all dynamics are
well separated that demonstrates the disentanglement of various actions. On right (b) and (c) are
examples of unconditional generation.

dynamics; we empirically show it provides a helpful notion of disentanglement for image sequence
data. We demonstrate the performance on several tasks such as image-to-sequence, motion swapping
and unconditional generation. The main advantage of our model is we can generate long term
trajectories and traverse the motion manifolds of different actions in the latent space. We look forward
to future applications to other sequential data types, including music audio and speech.

One potential limitation associated with the presented approach is that it is rigid in its form since we
explicitly restrict every motion to a unique subspace that requires prior knowledge of the action label
of a sequence. In future work we will address this by allowing each motion in the data to be composed
from primitive motion components via a prior mixing distribution. Another limitation of our model
is that it is less able to deal with irregularly sampled sequences, changes in tempo or reversals. In
future work, this will be addressed by allowing a more flexible prior on the spacing between time
steps. Nevertheless, all such approaches depend critically on the decomposition demonstrated here,
and we argue that this work has demonstrated the significant promise of content and Hamiltonian
motion decomposition of image sequences.
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