
Supplementary Material

Asif Khan
School of Informatics

University of Edinburgh
asif.khan@ed.ac.uk

Amos Storkey
School of Informatics

University of Edinburgh
a.storkey@ed.ac.uk

A Appendix

A .1 ELBO Derivation

We use maximum loglikelihood on sequence variables to derive the evidence lower bound (ELBO),

log p(x1:T |u) = log

∫
p(x1:T , z, s1:T |u)ds1:T dz

= log

∫
p(x1:T , z, s1:T |u)
q(z, s1:T |x1:T ,u)

q(z, s1:T |x1:T ,u)ds1:T dz

≥
∫

log

[
p(x1:T , z, s1:T |u)
q(z, s1:T |x1:T ,u)

]
q(z, s1:T |x1:T ,u)ds1:T dz

≥ Eq(z,s1:T |x1:T ,u) log
[
p(x1:T , z, s1:T |u)
q(z, s1:T |x1:T ,u)

]
(1)

where st = [qt,pt]. The joint distribution is factorised as,

p(x1:T , z, s1:T |u) = p(z)
T∏
t=1

p(xt|qt, z)p(qt,pt|qt−1,pt−1,u) (2)

Since, we transform starting latent state s1 = [q1,p1] using a deterministic transformation f(ω) =
etH, we can write our transition distribution as,

p(st+1|st) = p(st)

∣∣∣∣ dfdst
∣∣∣∣ = p(st)e

Trace(H) (3)

Using the result we obtain the transition distribution over T steps as,
T∏
t

p(qt,pt|qt−1,pt−1,u) = p(q1,p1|u)eT.Trace(H) (4)

The transition model is reversible; therefore, without loss of generality we can replace starting step 1
with any arbitrary t. We now equate (4) in the generative model that reduces the factorisation to,

p(x1:T , z, s1:T |u) = p(z)p(st|u)eT.Trace(H)
T∏
t

p(xt|qt) (5)

We factorise the variational distribution as,

q(z, s1:T |x1:T ,u) = q(z|x1:T)q(qt|xt,u)q(pt|xt:t−w,u)
∏
t

q(st+1|st), st = [qt,pt] (6)

1st CtrlGen: Controllable Generative Modeling in Language and Vision Workshop at NeurIPS 2021.

x1 x2 x3 xT

qk1 qk2 qk3 qkT

pk1 pk2 pk3 pkT

z

uk

. . .

. . .

x1 xt−w xt xT

qktz

uk

pkt

.

Figure 1: Probabilistic graph of our proposed model. On the left is a graph of our generative model
and on the right is of our inference model.

q(st+1|st) = q(qt|xt,u)q(pt|xt:t−w,u)
∣∣∣∣ dfdst

∣∣∣∣ = q(qt|xt,u)q(pt|xt:t−w,u)eT.Trace(H) (7)

where w is a window size to condition momentum variable on previous steps. We can rewrite the
variational distribution as,

q(z, s1:T |x1:T ,u) = q(z|x1:T)q(qt|xt,u)q(pt|xt:t−w,u)eTTrace(H) (8)

We now use the equations (8) and (5) to rewrite the ELBO as,

log p(x1:T |u) ≥ Eq(z|x1:T),q(qt|xt,u),q(pt|xt:t−w,u) log

[
p(z)p(qt,pt|u)eT.Trace(H)

∏T
t p(xt|qt, z)

q(z|x1:T)q(qt|xt,u)q(pt|xt:t−w,u)eT.Trace(H)

]

Eq(qt|xt,u) log
[
p(qt|u)
q(qt|xt,u)

]
+ Eq(pt|xt:t−w,u) log

[
p(pt|u)

q(pt|xt:t−w,u)

]
+ Eq(z|x1:T) log

[
p(z)

q(z|x1:T)

]
+ Eq(qt|xt,u)

[∑
t′

log p(xt′ |qt′ , z)

]

Since, for each motion uk we associate a separate Hamiltonian Hk that acts on a subspace Sk, we
can view the full state space S as a partitions of symmetry groups S = S1 ⊕ · · · ⊕ SK where the
Hamiltonian H is in the block diagonal form H = diag(H1, · · ·,HK). We therefore, express the
distributions in terms of the variables of their respective subspaces. to obtain the final ELBO,

log p(x1:T |u) ≥ −KL[q(qkt |xt,u)||p(qkt)]−KL[q(pkt:t−w|xt,u)||p(pkt)]

−KL[q(z|x1:T ,u)||p(z)] + Eq(qkt |xt,u)

[∑
t′

log p(xt′ |qt′ , z)

]
(9)

(10)

The probabilistic graph of our generative and inference model is provided in

A .2 Background

In this section, we provide a small overview of the necessary definitions useful in the context of our
work.

2

The symmetry of an object is a transformation that leaves some of its properties unchanged. E.g.,
translation, rotation, etc. The study of symmetries plays a fundamental role in discovering the con-
stants of the physical systems. For instance, the space translation symmetry means the conservation
of linear momentum, and the rotation symmetry implies the conservation of angular momentum.
Groups are fundamental tools used for studying symmetry transformations. Formally we say,

Definition 1. A group G is a set with a binary operation ∗ satisfying following conditions:

• closure under ∗, i.e., x ∗ y ∈ G for all x, y ∈ G

• there is an identity element e ∈ G, satisfying x ∗ e = e ∗ x = e for all x ∈ G

• for each element x ∈ G there exist an inverse x−1 ∈ G such that x ∗ x−1 = x−1 ∗ x = e

• for all x, y, z ∈ G the associative law holds i.e. x ∗ (y ∗ z) = (x ∗ y) ∗ z

The nature of the symmetry present in a system decides whether a group is discrete or continuous. A
group is discrete if it has a finite number of elements. For e.g., a dihedral group D2 generated by
an e identity, r rotation by π, and f reflection along x-axis consists of finite elements {e, r, f, rf}.
The group generators are a set of elements that can generate other group elements using the group
multiplication rule. For D2 the generators are {e, r, f}. A continuous group is characterised by the
notion of infinitesimal transformation and are generally known as Lie groups.

Definition 2. A Lie group G is a group which also forms a smooth manifold structure, where the
group operations under multiplication G×G→ G and its inverse G→ G are smooth maps.

A group of 2D rotations in a plane is one common example of Lie group given by, SO(2) = {R ∈
R2×2|RTR = I, det(R) = 1}. The SO(2) a single parameter θ group simply given by a 2D rotation

matrix R(θ) =
(
cos θ − sin θ
sin θ cos θ

)
.

Definition 3. A Lie algebra g of a Lie group G is the tangent space to a group defined at its identity
element I with an exponential map exp : g→ G and a binary operation g× g→ g.

The structure of Lie groups are of much interest due to the Noether’s theorem that states for any
differentiable symmetry there exists a conservation law. In physics such conservation laws are studied
by identifying the Hamiltonian of the physical system [1]. In this work, we look at two choice
of Hamiltonians that form a symplectic group Sp(2d) and symplectic orthogonal group SpO(2d)
structure.

Definition 4. A symplectic group Sp(2d) is a Lie group formed by the set of real symplectic matrices

defined as Sp(2d) = {H ∈ R2d×2d| HT JH = J}, where J =

(
0 Id
−Id 0

)
.

Definition 5. The Lie algebra sp of a symplectic group Sp(2d) is a vector space defined by, sp =
{H ∈ R2d×2d| JH = (JH)T }
Definition 6. A symplectic orthogonal group SpO(2d) is defined by restricting the Hamiltonian to
the orthogonal group.

Definition 7. A group action is a map ◦ : G × X → X iff (i) e ◦ x = x, ∀x ∈ X , where e is the
identity element of G, (ii) (g1 · g2) ◦ x = g1 · (g2 ◦ x), g1, g2 ∈ G,∀x ∈ X where · is a group
operation.

A .3 Experiment and Results

A .3.1 Network Architecture

The architecture of the encoder and decoder network is based on [2] also outlined in Table 1 and 2.
We use the same network architecture for both sprites and MUG dataset. The output of an encoder is
given as an input to the content, position, and momentum network to get the variational distributions
in Z, Q and P space. The details of network are described in Table 3. For the position and momentum
network, the input action k is represented by a one-hot representation u that takes one at index k and
is zero everywhere else.

3

Encoder Architecture

Conv2d kernels=256, kernelSize=(5,5), stride=(1,1), padding=(2,2)
BatchNorm2d -> LeakyReLU(0.2)

Conv2d kernels=256, kernelSize=(5,5), stride=(2,2), padding=(2,2)
BatchNorm2d -> LeakyReLU(0.2)

Conv2d kernels=256, kernelSize=(5,5), stride=(2,2), padding=(2,2)
BatchNorm2d -> LeakyReLU(0.2)

Conv2d kernels=256, kernelSize=(5,5), stride=(2,2), padding=(2,2)
BatchNorm2d -> LeakyReLU(0.2)

Conv2d kernels=256, kernelSize=(5,5), stride=(1,1), padding=(2,2)
BatchNorm2d -> LeakyReLU(0.2) -> Rearrange(’b c w h -> b (c w h)’)
Linear inSize=(c w h), outSize=(4096)

BatchNorm1d -> LeakyReLU(0.2)
Linear inSize=(4096), outSize=(2048)

BatchNorm1d -> LeakyReLU(0.2)
Linear inSize=(2048), outSize=(h)

BatchNorm1d -> LeakyReLU(0.2)
Table 1: Encoder network

Decoder Architecture

Linear inSize=(h), outSize=(4096)
BatchNorm1d -> LeakyReLU(0.2)

Linear inSize=(4096), outSize=(c w h)
BatchNorm1d -> LeakyReLU(0.2) -> Rearrange(’b (c w h) -> b c w h’)

ConvTranspose2d kernels=256, kernelSize=(5,5), stride=(2,2), padding=(2,2)
BatchNorm2d -> LeakyReLU(0.2)

ConvTranspose2d kernels=256, kernelSize=(5,5), stride=(2,2), padding=(2,2)
BatchNorm2d -> LeakyReLU(0.2)

ConvTranspose2d kernels=256, kernelSize=(5,5), stride=(2,2), padding=(2,2)
BatchNorm2d -> LeakyReLU(0.2)

ConvTranspose2d kernels=256, kernelSize=(5,5), stride=(2,2), padding=(2,2)
BatchNorm2d -> LeakyReLU(0.2)

ConvTranspose2d kernels=256, kernelSize=(5,5), stride=(1,1), padding=(2,2)
BatchNorm2d -> Tanh()

Table 2: Decoder network

A .3.2 Training details

For MUG, we choose |Z| = 512, |Q| = K × 12 and |P| = K × 12 and for sprites |Z| = 256,
|Q| = K × 6 and |P| = K × 6, where K is the number of actions. For sprites, K = 3 and for MUG
K = 6. To train all our models we use an Adam [3] optimiser with a learning rate of 2e−4 and a
batch size of 24. We use Pytorch [4] for the implementation. The code will be made available on
publication. We train all our models on Nvidia GeForce RTX 2080 GPUs.

A .3.3 Results

We provide extended qualitative samples of our model on MUG and sprites dataset. Figure (2)
shows results of conditional sequence generation, Figure (3, 4) shows results of image to sequence
generation. Here we generate 16 frames in future conditioned on an initial starting frame. The
results demonstrate our model can generate long term sequences, Figure (5) shows results of motion
swapping.

4

Content and Motion Architecture

Content Position Momentum

LSTM in=h, out=Z Linear in=h+k, out=V Linear in=h+k, out=P
Linearµ in=Z, out=Z BatchNorm1d -> LeakyReLU(0.2) BatchNorm1d -> LeakyReLU(0.2)

Linearlog σ in=Z, out=Z Linear in=V, out=V Linear in=P, out=P
BatchNorm1d -> LeakyReLU(0.2) BatchNorm1d -> LeakyReLU(0.2)

Linearµ in=V, out=V TCN kernelSize=4, pad=3, stride=1
Linearlog σ in=V, out=V Linearµ in=P, out=P

Linearlog σ in=P, out=P
Table 3: Content and Motion network. TCN stands for temporal convolution network.

References

[1] Robert W Easton. Introduction to Hamiltonian dynamical systems and the N-body problem (KR
Meyer and GR Hall). SIAM Review, 35(4):659–659, 1993.

[2] Li Yingzhen and Stephan Mandt. Disentangled sequential autoencoder. In International Confer-
ence on Machine Learning, pages 5670–5679. PMLR, 2018.

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[4] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019.

5

(a) Conditional Sequence Generation. The first row is the original sequence, second row is a reconstructed
sequence and third is generated by an action of dynamical model on the first time frame

Figure 2: Conditional Sequence Generation. The first row is the original sequence, second row is a
reconstructed sequence and third is generated by an action of dynamical model on the first time frame

6

Figure 3: Image to Sequence generation. We generate dynamics of different action from a given
image. Each row is a unique action generated by the operator associated with that action.

7

Figure 4: Image to Sequence generation. We generate dynamics of different action from a given
image. Each row is a unique action generated by the operator associated with that action.

8

Figure 5: Motion Swapping. In each patch the first two rows are original sequence and the next two
rows obtained by swapping motion variables of two sequences.

9

	Appendix
	ELBO Derivation
	Background
	Experiment and Results
	Network Architecture
	Training details
	Results

