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Abstract

Several methods for discovering interpretable directions in the latent space of pre-
trained GANs have been proposed. Latent semantics discovered by unsupervised
methods are relatively less disentangled than supervised methods since they do not
use pre-trained attribute classifiers. We propose Scale Ranking Estimator (SRE),
which is trained using self-supervision. SRE enhances the disentanglement in
directions obtained by existing unsupervised disentanglement techniques. These
directions are updated to preserve the ordering of variation within each direction in
latent space. Qualitative and quantitative evaluation of the discovered directions
demonstrates that our proposed method significantly improves disentanglement
in various datasets. We also show that the learned SRE can be used to perform
Attribute-based image retrieval task without further training.

1 Introduction

Generative Adversarial Networks (GAN) are generative models that have witnessed significant
performance improvements in image synthesis over the last decade [9]. It has many applications,
including image, audio, and video generation, image manipulation and editing, image-to-image
translation, and many others.

The latent space of GANs is hard to interpret due to its high dimensional and abstract structure.
Various architectures such as InfoGAN [6], Structured GAN [7], and many others learn interpretable
and meaningful representations from images by either maximizing the information or promoting
independence between the latent variables. The fundamental drawback of these approaches is that
they fail in the case of complex datasets since the generation quality degrades as they learn to
disentangle. To alleviate this problem, recent works such as [24],[27] discover interpretable directions
directly from the latent space of pre-trained GANs. [27] performs unsupervised learning to identify
distinguishable directions while [10], [26] and [25] obtains directions analytically. These directions
need not be completely disentangled.

We propose Scale Ranking Estimator(SRE), a model learned via self-supervision strategy to enhance
disentanglement in the directions derived by current posthoc disentanglement approaches. Self-
supervision is a successful training paradigm for deep learning models that allows them to learn
in a label-efficient manner. In essence, SRE enhances disentanglement by enforcing the order of
variation within each transformation. Our method is independent of the GAN architecture used. We
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Figure 1: Illustration of the proposed approach;D is initialized with existing post-hoc disentanglement
directions. We first compute two linear combinations of directions in D, where the coefficients are
values in scale vectors ε1 and ε2, respectively. These linear combinations are then added to latent
code z, which gives a pair of shifted latent codes. Generator G outputs a pair of images which are
passed to the SRE. SRE decodes the scale vectors, ε̂1 and ε̂2 from the pair of images. Binary
cross-entropy loss is computed based on the difference between the predicted scale vectors and
pseudo-ground truth labels. Pseudo-ground truth labels are the original pairwise ordering between
the values in ε1 and ε2.

perform extensive qualitative and quantitative analysis on synthetic and natural datasets to show that
the proposed method improves the disentanglement of existing directions. SRE learns to encode
the magnitude of variation in each direction. We demonstrate a practical application where these
encodings can be directly used for Attribute-based image retrieval task.

2 Related Work

Generative Adversarial Networks GANs are one of the most popular generative models that shows
promising results on image synthesis [9]. It consists of a Generator and Discriminator that learns in an
adversarial setting. Recent variants of GANs such as StyleGAN [15], StyleGAN-2 [16], Progressive
GAN [14] and BigGAN [3] are shown to be very successful in generating high-resolution images.
Progressive GAN, a successor of conventional GAN, attempts to generate high-resolution images by
progressively growing the generator and discriminator. StyleGAN and StyleGAN-2 learn a mapping
network that maps the z-space to w-space that is more disentangled.

Post-hoc Disentanglement from pretrained GANs Extensive research has been conducted in the
field of learning interpretable directions from pre-trained GANs. They can be categorized into three
based on the learning paradigm used :

• Supervised : [2] computes the agreement between the output of a pre-trained semantic seg-
mentation network and the spatial location of the unit activation map to identify the concept
encoded in each unit. [24] and [28] use off-the-shelf classifiers to discover interpretable
directions in the latent space. A conditional normalizing flow version of [24] and [28] is
explored in [1]. The main limitation of the above approaches is that they require pre-trained
networks, which may not be available for complex transformations.

• Unsupervised : [27] discovers interpretable directions in an unsupervised manner by
jointly updating a candidate direction matrix and reconstructor that predicts the perturbed
direction. [22] proposes a regularization term that forces the Hessian of a generative model
with respect to its input to be diagonal. However, such methods require training. [10]
observed that applying PCA on the latent space of Style-GAN and BigGAN retrieves human-
interpretable directions. [25] and [26] obtained a closed-form solution by extracting the
interpretable directions from the weight matrices of pretrained generators. These methods
are computationally inexpensive since they do not require any form of training. [27] and
[22] attempts to learn directions that are easily distinguishable while [25], [26] and [10]
finds directions of maximum variance. However, none of these approaches ensure that only
a single factor of variation gets captured in a transformation. Our method addresses this
problem by defining a self-supervision task that promotes disentanglement on directions
captured by these methods.
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• Self-supervised : [12] and [23] make use of user-specified simple transformations as a
source of self-supervision to learn corresponding directions. The main drawback of these
approaches is that, user-specified edits are hard to obtain for complex transformations.
Unlike these methods, our method relies on transformations discovered by unsupervised
methods and hence can discover a wide variety of disentangled transformations.

3 Proposed Method

Firstly, we provide the intuition behind our approach. In an entangled transformation, formulating a
task that favors the dominant factor of variation will enhance the dominant factor in it. To achieve
this, we propose Scale Ranking Estimator (SRE), a neural network that learns to rank the scale
of each transformation in generated images. Imposing a ranking on the magnitude of variation in
each direction would hopefully force the SRE to distinguish between the factors of variation in the
associated transformation and thus capture the dominant factor of variation. The directions could then
be updated based on this knowledge. An illustration of the proposed approach is given in Figure 1.

We formally define all the components involved in our training scheme. Let G : Z → I be the
pre-trained generator, where Z is the latent space and I represents the pixel space. Interpretable
directions are discovered from the latent space of generator G. Let D ∈ Rk×d denote the matrix
whose columns correspond to interpretable directions in latent space. k and d are the latent space
dimensionality and the number of interpretable directions, respectively. We also define a neural
network SRE(i; θ), i ∈ I that outputs the scale of transformation corresponding to each direction
in D. D and SRE are the trainable components in our approach, while the parameters of G are
non-trainable.

3.1 Training scheme

We initialize D with a set of directions obtained from any post-hoc disentanglement method. A
linear walk in the latent space is given by ẑ → z + Dε, where Dε is the linear combination of
directions in D. ε = (ε1, ε2, .., εd) ∈ Rd, where εi ∼ U(−e, e) represents the scale of corresponding
direction. We sample ε1, ε2 ∈ Rd to generate images G(ẑ1) and G(ẑ2), where ẑ1 → z + Dε1

and ẑ2 → z +Dε2. These images are then passed to SRE which predicts ε̂1 and ε̂2 based on the
information encoded in the generated images.

The loss function to be minimized is as follows :

L = E
z∼N(0,1)

ε1,ε2∼U(−e,e)

d∑
i=1

LBCE(yi, ŷi) (1)

where,

ŷi = σ(ε̂i
1 − ε̂i2)

yi =

{
1, if ε1i > ε2i
0, otherwise

(2)

Here, LBCE is the binary cross-entropy loss between the predicted output and the pseudo ground-
truth, yi is determined by comparing the scale of transformation used to generate the images as shown
in (2). We provide self-supervision using the knowledge already present in the initialized direction
matrix to update it further.

We perform weight updates on D and SRE in an alternate fashion. There are two optimization steps
in each training iteration. Firstly, we compute the loss as specified in (1) to update the weights of
SRE by freezing the weights of direction matrix D. In the subsequent step, we use the updated
SRE to recalculate the loss as in (1). The parameters of SRE are now freezed to update D. Training
in this manner helps continually transfer some of the information from SRE to D and vice-versa.
This is critical since the initialization of SRE is random, whereas the initialization of D is partially
learned directions.
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As discussed above, ε is sampled from a multivariate uniform distribution with parameters e and
−e. If the specified range (−e, e) is relatively small, our method becomes highly constrained,
making it hard to capture the variations in a disentangled factor. If the range is set very wide,
the model has the freedom to allow a lot of variation in the transformation, which can cause it to
stay entangled. As a result, determining the correct values for the hyper-parameter e is crucial for
improved disentanglement.
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Figure 2: Comparison of latent traversals obtained by SeFa and SeFa + SRE on CelebA-HQ dataset.
For each attribute, middle image represents the original image, image to the left and right represents
the source image manipulated in positive and negative directions, respectively.

Pose Gender Age Smile Glasses

Pose

Gender

Age

Smile

Glasses

0.70 0.33 0.22 0.06 0.04

0.09 0.63 0.76 0.20 0.04

0.09 0.22 0.58 0.27 0.01

0.17 0.23 0.40 0.43 0.04

0.09 0.63 0.76 0.20 0.04

Pose Gender Age Smile Glasses

Pose

Gender

Age

Smile

Glasses

0.69 0.13 0.20 0.10 0.04

0.15 0.63 0.06 0.07 0.04

0.15 0.02 0.46 0.16 0.00

0.05 0.01 0.05 0.43 0.04

0.06 0.06 0.07 0.01 0.20

Figure 3: Rescoring matrix obtained for SeFa (Left) and SeFa + SRE (Right) on CelebA-HQ dataset.
Each row represents an attribute obtained by moving in the relevant direction, and the column
corresponds to attribute predictors used to compute the scores.

4 Experimental Details

This section discusses the datasets used, pre-trained generators corresponding to each dataset, choice
of initialization for D, and hyperparameters involved.

4.1 Datasets

We perform the experiments on following datasets:

• CelebA-HQ [14] consist of 30,000, 1024× 1024 resolution images of Celebrity faces.
• AnimeFaces dataset [13] consist of 64× 64 resolution face images of Anime characters.
• LSUN-Cars [29] consist of 512× 512 resolution images of cars.
• 3D Shapes [4] containing 480,000 images of 64× 64 resolution synthetic images with 6

factors of variation.

4.2 Pre-trained Generators

We use four different variants of GAN for our experiments to show that our method is independent
of the GAN architecture used. PGGAN [14] is used for generating samples from CelebA-HQ
dataset. As a representative of conventional GANs, we use Spectral Norm GAN [21] to generate
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Figure 4: Comparison of latent traversals obtained by LD and LD + SRE on CelebA-HQ dataset. For
each attribute, middle image represents the original image, image to the left and right represents the
source image manipulated in positive and negative directions, respectively.
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Figure 5: Comparison of latent traversals obtained by LD and LD + SRE on AnimeFaces dataset. For
each attribute, middle image represents the original image, image to the left and right represents the
source image manipulated in positive and negative directions, respectively.

Anime Faces. StyleGAN, [15] and StyleGAN-2 [17] are used for LSUN-Cars and 3DShapes dataset,
respectively. We used the same pre-trained generators that are used in [27] and [25].

4.3 Initialization

We mainly use two contrasting post-hoc disentanglement algorithms to obtain initialization for the
direction matrix D. As a sampling-based initialisation, we consider SeFa [25] because it does not
require any form of training, whereas the other initialization used is based on directions learned
by LD [27], which requires learning to obtain interpretable directions. We show that our method
enhances the disentanglement of any set of directions regardless of the paradigm used to generate it,
be it sampling or learning. We used the implementation released by the authors of [27] and [25] to
derive the directions for initialization on all the datasets.

4.4 Hyperparameters

• Architecture : For all the four datasets, We utilize ResNet-18 model [11] for SRE while
D is a simple linear operator. We discovered that ensuring orthogonality between directions
in D in each iteration resulted in better disentanglement.

• Number of iterations : We set number of iterations to be 6000 for 3DShapes and 20000
for all other datasets. 3DShapes requires relatively lesser number of iterations since it is a
synthetic dataset.

• Optimization : We use Adam optimizer to optimize both D and SRE. The learning rate is
set to 0.0001. Batch size is 64 for 3DShapes and 8 in the case of CelebA-HQ dataset. For
all other datasets, batch size is set to 16.

5 Results

In this section, we discuss the qualitative and quantitative results for each of the datasets. SeFa +
SRE and LD + SRE correspond to our approach where D is initialized with SeFa and LD directions,
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respectively. We compare the performance of SeFa + SRE with SeFa and LD + SRE with LD
directions.

5.1 Qualitative Analysis

We conducted a thorough qualitative analysis to evaluate the performance of our proposed approach.
Firstly, we analyze the performance of SeFa compared to SeFa + SRE on 3DShapes, CelebA, and
LSUN Cars datasets. We plot the latent traversal starting with the original image by traversing in
opposite sides along the relevant directions. The range of ε is set from -10 to 10. Figure 6 shows
the qualitative results on Shapes3D for three different attributes, floor hue, wall hue, and object hue.
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Figure 6: Latent traversal on 3DShapes. For each
attribute, the first row corresponds to SeFa and the
second row corresponds to SeFa + SRE.

It can be observed that floor hue is entangled
with object shape and wall hue in the case
of SeFa directions while our method improves
these directions by disentangling floor hue from
the other attributes. A similar trend can be seen
in the case of wall hue which is entangled with
floor hue in SeFa. More latent traversals on
3DShapes are available in Appendix. Qualita-
tive analysis on CelebA-HQ and LSUN Cars
dataset is demonstrated in Figure 2 and Figure
7. Each transformation corresponding to SeFa is
entangled with one or more attributes. In Figure
7, car type and color are entangled with zoom
in case of SeFa. However, SeFa + SRE disen-
tangles these attributes from zoom. Similarly,
SeFa entangles zoom with orientation whereas
our method preserves zoom by removing the effect of orientation. Qualitative analysis shows that
SRE applied on SeFa initialization disentangles SeFa directions.

We also analyze the directions obtained by LD and SRE applied on LD initialization as shown
in Figure 5 and 10. Even though LD seeks distinguishable directions, it can be seen that the
transformations obtained are quite entangled on both CelebA-HQ and AnimeFaces datasets. We
noticed that these transformations are less identity-preserving which is reflected in the Identity
preservation accuracies shown in Table 1. Qualitative analysis shows that our approach based on
SRE updates the directions so that it results in disentangled and identity-preserving transformations.
Additional latent traversal on various datasets and directions are provided in the Appendix.

5.2 Quantitative Analysis

We perform quantitative analysis on CelebA-HQ and 3DShapes to evaluate the proposed approach.
The two quantitative metrics that we employed to analyze the performance on CelebA-HQ dataset
are Rescoring Analysis and Identity Preservation accuracy. We use pre-trained attribute predictors
released by the authors of [30] to perform rescoring analysis. These attribute predictors are binary
classifiers trained on each of the 40 attributes of CelebA dataset [20]. We perform rescoring analysis
similar to that described in [24]. We take a random sample of 2000 generated images and manipulate
them in the direction of the desired attribute.

Table 1: Quantitative metrics on CelebA-HQ.

Method Rescoring(↑) IPA(↑)
SeFa 0.64 0.61
SeFa + SRE 7.77 0.97

LD 1.43 0.73
LD + SRE 3.73 0.94

Table 2: Quantitative metrics on 3DShapes.

Method MIG(↑) Factor-VAE(↑)
SeFa 0.22±0.01 0.86 ±0.01
SeFa + SRE 0.45±0.06 0.94±0.02

LD 0.14±0.05 0.78±0.06
LD + SRE 0.21±0.05 0.90±0.05
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The pre-trained attribute predictors are then used to obtain predictions for the original and altered
images. We subsequently compute the absolute value of the difference between the predictions
produced for the original image and the manipulated image. The rescoring for the selected direction
is computed by taking the mean of this metric across images. Figure 3 shows the rescoring matrix
corresponding to SeFa and SeFa + SRE. It can be seen that, when applied on SeFa initialization, SRE
better disentangles each of the five attributes compared to SeFa. This analysis supports the qualitative
analysis discussed in the previous section. The directions updated by SRE retain the knowledge of
individual attributes while reducing the entanglement with other attributes.
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Figure 7: Comparison of latent traversals obtained
by SeFa and SeFa + SRE on LSUN Cars dataset.
For each attribute, middle image represents the
original image.

As observed in the rescoring matrix, SeFa fails
to capture Eyeglasses. However, there are direc-
tions in SeFa that encodes eyeglasses as the dom-
inant factor. By dominant factor, we mean that it
is dominant compared to other factors while the
magnitude of the variation is less. SRE disentan-
gles eyeglasses better in one of these directions,
which is an interesting observation. This shows
that SRE can disentangle factors of finer varia-
tion that the initialization struggles to capture.
We provide a summary of rescoring to compare
the performance of our approach with SeFa and
LD. Since the rescoring matrix should be close
to the diagonal matrix in case of ideal disentan-
glement, we compute the ratio of the sum of
squares of diagonal elements to that of the off-
diagonal elements. Higher the value, better the
disentanglement. These values are reported in
Table 1.

Identity preservation accuracy (IPA) is also com-
puted to see how effectively SRE retains identity
while enhancing disentanglement. We randomly
sample 2000 generated images and edit them in
the desired direction to obtain the manipulated
images. The pair of images are fed into the face
recognition model given by [8], which returns
a binary value indicating whether the faces are
similar or not. We repeat this procedure in three
different directions for all the methods to com-
pute average Identity preservation accuracy. Table 1 summarizes these values. Results suggest that
SRE implicitly learns to preserve identity as it learns to disentangle. We believe that our model learns
to incorporate smoothness while learning a ranking function on the scale of transformation which
helps it to preserve identity.

We also perform quantitative evaluation on 3DShapes since the ground truth factors are readily
available. We train SRE and the baselines using seven pretrained StyleGAN generators for each
random seed. Training is done for five different random seeds. We calculate Mutual Information Gap
(MIG) [5] and Factor-VAE [19], which are two widely used disentanglement metrics in the literature.
This is done by computing the latent space embeddings for real samples by training a GAN inversion
network as in [18]. The evaluation metrics are computed on real samples to analyze the performance
of disentangled directions. The mean and standard deviation of the metrics across the models trained
for different seeds are reported in Table 2. Both the MIG and Factor-VAE metrics show that SRE
outperforms the baselines.

We conduct an ablation study on 3DShapes to investigate the effect of initialization on SRE. We
compare the performance of SRE in terms of MIG with three different initializations, namely Random,
SeFa and LD. This study is conducted by fixing all the hyperparameters except the initialization.
Table 3 reports the results for the experiment performed. One noteworthy finding is that our method
performs worse in terms of MIG in the case of random initialization.
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Table 3: Comparison of MIG for SRE initial-
ized with Random, SeFa and LD directions on
3DShapes.

Initialization MIG(↑)
Random 0.03
SeFa 0.32
LD 0.15

This demonstrates that SRE significantly de-
pends on the self-supervision obtained from
the initialization to enhance its disentangle-
ment. SRE coupled with a weak source self-
supervision struggles to disentangle. Hence, the
choice of initialization is crucial for our task to
perform well. Various other ablation studies that
analyze the effect of the range of ε and training
paradigm are available in the Appendix.

6 Attribute-based Image Retrieval

This section demonstrates an immediate practical application of the learned SRE where it can be
directly used for Attribute-based image retrieval task. As we already discussed, our approach updates
the initialization and enhances disentanglement in the directions. During the training phase, the Scale
Ranking Estimator is updated as well to aid the whole learning process. This section explores the
possibility of using the trained SRE for Attribute-based image retrieval without any kind of task
specific retraining or fine-tuning.

Query Images Attribute-based similar images

Pose

Gender

Expression

Age

Figure 8: Results for Attribute-based image retrieval task on
CelebA-HQ dataset.

Given a query image and a specific at-
tribute, our goal is to retrieve images
from a pool of real images similar to
the query image based on the speci-
fied attribute. Attribute-based image
retrieval could be of great use in Re-
verse image search, Person Identifica-
tion e.t.c. We provide qualitative evi-
dence to show that the SRE that comes
as a by-product of our training process
can be used for attribute-based image
retrieval without any additional train-
ing. During the inference, given any
image, SRE outputs a vector repre-
sentation where each value at index
i represents the scale or the amount
of variation of attribute encoded by
the direction at index i in the learned
direction matrix D.

We first get the output representations from SRE for all the pool images and the query image. For
a given attribute, we obtain the attribute-specific variation for all images by accessing the index
corresponding to the direction that encodes the given attribute in the output representations. Pool
images are sorted in an ascending order based on the Euclidean distance between their attribute-
specific variation to that of the query image. Top K images from the sorted set are K images from
the pool most similar to the query image with respect to the specified attribute.

We empirically demonstrate the performance of Attribute-based image retrieval on CelebA-HQ data
set in Figure 8 . We considered SRE model trained using SeFa initialization for the analysis. We
set K = 5 for all the attributes. The attributes considered are Pose, Gender, Expression, and Age.
According to qualitative results, SRE performs well on the Attribute-based retrieval task, although it
is not explicitly trained to do so.

7 Conclusion & Future work

We propose a new method for improving disentanglement and interpretability in the directions
obtained by existing post-hoc disentanglement methods by learning the Scale Ranking Estimator
(SRE). We also provide a thorough quantitative and qualitative analysis of its performance on various
real-world and synthetic datasets. Our approach could be used to improve the disentanglement of any
set of existing directions regardless of the underlying algorithm used to obtain them. In addition to
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enhancing disentanglement, trained SRE can also be used for Attribute-based image retrieval without
any task-specific training.

Our approach currently relies on existing post-hoc disentanglement learning algorithms. Eliminating
this dependence will allow us to discover new interpretable directions. Modification of our approach
to meet this objective can be considered as future work. Computing a closed-form analytical solution
to enforce order on the variation in each transformation would also be helpful to enhance the
disentanglement by cutting down the training time. Better quantitative metrics need to be proposed to
evaluate post-hoc disentanglement methods on natural datasets which consist of complex attributes.
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A Appendix

We provide latent traversals for 3DShapes, CelebA-HQ and Anime Faces dataset. We also discuss
ablation studies performed to analyze the effect of hyperparameters and training paradigms used
during the training.
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B Ablation studies

B.1 Effect of ε

We devise an ablation to study the effect of ε on training of SRE. We consider three ranges of ε : (-1,
1), (-3, 3), (-10, 10) with all the other parameters fixed. MIG is computed once SRE is trained for
6000 iterations. The results are summarized in Table 4. SRE is able to disentangle factors of variation
with ε range set to (-1,1). As ε is progressively increased, MIG shows a declining trend. Restricting
the range of ε forces the model to accommodate factors that take relatively lesser number of variations,
hence forcing the representation to be disentangled. An ε with larger range provides flexibility to
accommodate entangled factors, whereas extremely less range of ε will not have sufficient values to
properly accommodate variation within a single feature, thus failing to learn any factors of variation
properly in both the cases. Therefore, setting the right range for ε is crucial for the SRE to perform
well.

Table 4: Effect of ε on perfomance of SRE.

Range of ε MIG(↑)
(-1, 1) 0.31
(-3, 3) 0.26

(-10, 10) 0.18

B.2 Effect of Joint Training

To study the effect of training scheme on performance of SRE, we modify the training paradigm
such that both SRE and directions are updated jointly rather than in an alternate manner. Updating
SRE and directions jointly during training resulted in a MIG value of 0.067 while alternate updation
resulted in an enhanced value of 0.316. This clearly demonstrates the necessity of alternative training
paradigm for training SRE.

C Latent Traversal

We provide latent traversal for all the six factors of variation, Floor hue, Wall hue, Object hue,
Orientation, Shape, and Scale. Each rectangular grid corresponds to one sample. The first row
corresponds to latent traversal corresponding to baseline initialization and the second row corresponds
to latent traversal in directions obtained after training with SRE.
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Figure 9: Comparison of latent traversals obtained by SeFa and SeFa + SRE on 3DShapes dataset.
Factors shown are Floor hue, Wall hue and Object hue.
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Figure 10: Comparison of latent traversals obtained by SeFa and SeFa + SRE on 3DShapes dataset.
Factors shown are Orientation, Shape and Scale.
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Figure 11: Comparison of latent traversals obtained by SeFa and SeFa + SRE on CelebA-HQ dataset.
The attribute considered is Age.
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Figure 12: Comparison of latent traversals obtained by SeFa and SeFa + SRE on CelebA-HQ dataset.
The attribute considered is Expression.
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Figure 13: Comparison of latent traversals obtained by SeFa and SeFa + SRE on CelebA-HQ dataset.
The attribute considered is Eye glasses.
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Figure 14: Comparison of latent traversals obtained by LD and LD + SRE on CelebA-HQ dataset.
The attribute considered is Gender.
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Figure 15: Comparison of latent traversals obtained by LD and LD + SRE on CelebA-HQ dataset.
The attribute considered is Hair.
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Figure 16: Comparison of latent traversals obtained by LD and LD + SRE on CelebA-HQ dataset.
The attribute considered is Expression.
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Figure 17: Comparison of latent traversals obtained by LD and LD + SRE on AnimeFaces dataset.
The attribute considered is Eyecolor.
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Figure 18: Comparison of latent traversals obtained by LD and LD + SRE on AnimeFaces dataset.
The attribute considered is Gender.
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Figure 19: Comparison of latent traversals obtained by LD and LD + SRE on AnimeFaces dataset.
The attribute considered is Hair color.
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