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Abstract

The visual world around us can be described as a structured set of objects and their
associated relations. An image of a room may be conjured given only the descrip-
tion of the underlying objects and their associated relations. While there has been
significant work on designing deep neural networks which may compose individual
objects together, less work has been done on composing the individual relations
between objects. A principal difficulty is that while the placement of objects is
mutually independent, their relations are entangled and dependent on each other.
To circumvent this issue, existing works primarily compose relations by utilizing a
holistic encoder, in the form of text or graphs. In this work, we instead propose
to represent each relation as an unnormalized density (an energy-based model),
enabling us to compose separate relations in a factorized manner. We show that
such a factorized decomposition allows the model to both generate and edit scenes
that have multiple sets of relations more faithfully. We further show that decompo-
sition enables our model to effectively understand the underlying relational scene
structure. Project page at: https://composevisualrelations.github.io/

1 Introduction

The ability to reason about the component objects and their relations in a scene is key for a wide
variety of robotics and AI tasks, such as multistep manipulation planning [11], concept learning [25],
navigation [43], and dynamics prediction [3]. While a large body of work has explored inferring and
understanding the underlying objects in a scene, robustly understanding the component relations in
a scene remains a challenging task. In this work, we explore how to robustly understand relational
scene description (Figure 1).

Naively, one approach towards understanding relational scene descriptions is to utilize existing
multi-modal language and vision models. Such an approach has recently achieved great success in
DALL-E [36] and CLIP [35], both of which show compelling results on encoding object properties
with language. However, when these approaches are instead utilized to encode relations between
objects, their performance rapidly deteriorates, as shown in [36] and which we further illustrate in
Figure 6. We posit that the lack of compositionality in the language encoder prevents it from capturing
all the underlying relations in an image.

To remedy this issue, we propose instead to factorize the scene description with respect to each
individual relation. Separate models are utilized to encode each individual relation, which are then
subsequently composed together to represent a relational scene description. The most straightforward
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Figure 1: Our model can generate and edit images with multiple composed relations. Top: Image genera-
tion results based on relational scene descriptions. Bottom: Image editing results based on relational scene
descriptions.

approach is to specify distinct regions of an image in which each relation can be located, as well as a
composed relation description corresponding to the combination of all these regions.

Such an approach has significant drawbacks. In practice, the location of one pair of objects in
a relation description may be heavily influenced by the location of objects specified by another
relation description. Specifying a priori the exact location of a relation will thus severely hamper the
number of possible scenes that can be realized with a given set of relations. Is it possible to factorize
relational descriptions of a scene and generate images that incorporate each given relation description
simultaneously?

In this work, we propose to represent and factorize individual relations as unnormalized densities
using Energy-Based Models. A relational scene description is represented as the product of the
individual probability distributions across relations, with each individual relation specifying a separate
probability distribution over images. Such a composition enables interactions between multiple
relations to be modeled.

We show that this resultant framework enables us to reliably capture and generate images with
multiple composed relational descriptions. It further enables us to edit images to have a desired set of
relations. Finally, by measuring the relative densities assigned to different relational descriptions, we
are able to infer the objects and their relations in a scene for downstream tasks, such as image-to-text
retrieval and classification.

There are three main contributions of our work. First, we present a framework to factorize and
compose separate object relations. We show that the proposed framework is able to generate and
edit images with multiple composed relations and significantly outperforms baseline approaches.
Secondly, we show that our approach is able to infer the underlying relational scene descriptions
and is robust enough in understanding semantically equivalent relational scene descriptions. Finally,
we show that our approach can generalize to a previously unseen relation description, even if the
underlying objects and descriptions are from a separate dataset not seen during training. We believe
that such generalization is crucial for a general artificial intelligence system to adapt to the infinite
number of variations of the world around it.

2 Method

Given a training dataset C = {xi, Ri}Ni=1 with N distinct images xi ∈ RD and associated relational
descriptions Ri, we aim at learning the underlying probability distribution pθ(x|R) — the probability
distributions of an image given a corresponding relational description. To represent pθ(x|R), we split
a relational description R into K separate relations {r1 · · · , rK} and model each component relation
separately using a probability distribution pθ(x|rk) which is represented as an Energy-Based Model.
Our overall scene probability distribution is then modeled by a composition of individual probability
distributions for each relation description pθ(x|R) ∝

∏
k pθ(x|rk).

2



Compose 
Energies

A small red metal cylinder
to the left of a large blue 
metal sphere

A small red metal cylinder
below a small yellow 
rubber sphere

Relational Scene Descriptions

…

Per Relation Description

Relational
Energy Function

Relational
Energy Function

𝐸!

𝐸"

…

Generated Image

A small red metal cylinder to 
the left of a large blue metal 
sphere. … A small red metal 
cylinder below a small 
yellow rubber sphere

Figure 2: Overview of our pipeline for understanding a relational scene description. A relational scene description
is split into a set of underlying relation descriptions. Individual relation descriptions are represented as EBMs
which are subsequently composed together to generate an image.

In this section, we give an overview of our approach towards factorizing and representing a relational
scene description. We first provide a background overview of Energy-Based Models (EBMs) in
Section 2.1. We then describe how we may parameterize individual relational probability distributions
with EBMs in Section 2.2. We further describe how we compose relational probability distributions
to model a relational scene description in Section 2.3. Finally, we illustrate downstream applications
of our relational scene understanding model in Section 2.4.

2.1 Energy-Based Models
We model each relational probability distribution utilizing an Energy-Based Model (EBM) [6, 26].
EBMs are a class of unnormalized probability models, which parameterize a probability distribution
pθ(x) utilizing a learned energy function Eθ(x):

pθ(x) ∝ e−Eθ(x). (1)
EBMs are typically trained utilizing contrastive divergence [16], where energies of training data-
points are decreased and energies of sampled data points from pθ(x) are increased. We adopt the
training code and models from [8] to train our EBMs. To generate samples from an EBM pθ(x), we
utilize MCMC sampling on the underlying distribution, and Langevin dynamics, which refines a data
sample iteratively from a random noise:

x̃m = x̃m−1 − λ

2
∇xEθ(x̃

m−1) + ωm, ωm ∼ N (0, σ) (2)

where m refers to the iteration and λ is the step size, utilizing the gradient of the energy function
with respect to the input sample ∇xEθ, and ωm is sampled from a Gaussian noise. EBMs enable
us to naturally compose separate probability distributions together [7]. In particular, given a set of
independent marginal distributions {piθ(x)}, the joint probability distribution is represented as:∏

i

piθ(x) ∝ e−
∑

i E
i
θ(x), (3)

where we utilize Langevin dynamics to sample from the resultant joint probability distribution.

2.2 Learning Relational Energy Functions

Given a scene relation ri, described using a set of words {w1
i , . . . w

n
i }, we seek to learn a conditional

EBM to model the underlying probability distribution pθ(x|ri):

pθ(x; ri) ∝ e−Ei
θ(x|Enc(ri)), (4)

where pθ(x|ri) represents the probability distribution over images given relation ri and Enc(ri)
denotes a text encoder for relation ri.

The most straightforward manner to encode relational scene descriptions is to encode the entire
sentence using an existing text encoder, such as CLIP [35]. However, we find that such an approach
cannot capture scene relations as shown in Appendix Section B. An issue with such an approach is
that the sentence encoder loses or masks the information captured by the relation tokens in ri.

To enforce that the underlying relation tokens in ri is effectively encoded, we instead propose to
decompose the relation ri into a relation triplet (r′i, o

1
i , o

2
i ), where r′i is the relation token, e.g. “below”,

“to the right of”, o1i is the description of the first object, and o2i is the description of the second object
appeared in ri. Each separate entry in the relation triplet is then separately embedded.

Such an encoding scheme encourages the models to encode underlying objects and relations in
a scene, enabling us to effectively model the relational distribution. We explored two separate
approaches to embed the underlying object descriptions into our relational energy function.
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Table 1: Evaluation of the accuracy of object relations in the generated images or edited images on the CLEVR
and iGibson datasets. We compare our method with baselines on three test sets, i.e. 1R, 2R, and 3R (see text).

Dataset Model Image Generation (%) Image Editing (%)
1R Acc 2R Acc 3R Acc 1R Acc 2R Acc 3R Acc

CLEVR

StyleGAN2 10.68 2.46 0.54 10.04 2.10 0.46
StyleGAN2 (CLIP) 65.98 9.56 1.78 - - -

Ours (CLIP) 94.79 48.42 18.00 95.56 52.78 16.32
Ours (Learned Embed) 97.79 69.55 37.60 97.52 65.88 32.38

iGibson

StyleGAN2 12.46 2.24 0.60 11.04 2.18 0.84
StyleGAN2 (CLIP) 49.20 17.06 5.10 - - -

Ours (CLIP) 74.02 43.03 19.59 78.12 32.84 12.66
Ours (Learned Embed) 78.27 45.03 19.39 84.16 44.10 20.76

CLIP Embedding. One approach we consider is to directly utilize CLIP to obtain the embedding
of an object description. Such an approach may potentially enable us to generalize relations in a
zero-shot manner to new objects by utilizing CLIP’s underlying embedding of the object, but may also
hurt learning if the underlying object embedding does not distinctly separate two object descriptions.

Random Initialization. Alternatively, we may encode an object description using a learned em-
bedding layer that is trained from scratch. In this approach, we extract a scene embedding by
concatenating the learned embeddings of color, shape, material, and size of any two objects, o1i , o

2
i ,

and their relation ri.

2.3 Representing Relational Scene Descriptions
Given an underlying scene description R, we represent the underlying probability distribution p(x|R)
by factorizing it as a product of probabilities over the the underlying relations rk inside R.

Given the separate relational energy functions learned in Section 2.2, this probability p(x|R) is
proportional to

p(x|R) = e−Ek
θ (x|R) ∝

∏
k

p(x|rk) = e
−

∑
k

Ek
θ (x|Enc(rk))

, (5)

which is a new EBM with underlying energy function Eθ(x|R) =
∑
k

Ek
θ (x|Enc(rk)). The overview

of the proposed method is shown in Figure 2, where E1, · · · , EK correspond to the K individual
relational energy functions Ek

θ (x|Enc(rk)).

2.4 Downstream Applications
By learning the probability distribution p(x|R) with corresponding EBM Eθ(x|R), our model can be
applied to solve many downstream applications, such as image generation, editing, and classification,
which we detail below and validate in the experiment section.

Image Generation. We generate images from a relational scene description R by sampling from
the probability distribution p(x|R) using Langevin sampling on the energy function Eθ(x|R) from
random noise.

Image Editing. To edit an image x′, we utilize the same probability distribution p(x|R) and
Langevin sampling on the energy function Eθ(x|R) but initialize sampling from the image we wish
to edit x′ instead of random noise.

Relational Scene Understanding. We may further utilize the energy function Eθ(x|R) as a tool
for relational scene understanding by noting that p(x|R) ∝ e−Eθ(x|R). The output values of the
energy function can be used as a matching score of the generated/edited image and the given scene
relational scene description R.

3 Experiment
We conduct empirical studies to answer the following questions: (1) Can we learn relational models
that can generate and edit complex multi-object scenes when given relational scene descriptions
with multiple composed scene relations? (2) Can we use our model to generalize to scenes that are
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Figure 3: Image generation results on the CLEVR dataset. Image are generated based on 1 ∼ 4 relational
descriptions. Note that the models are trained on a single relational description and the composed scene relations
(2, 3, and 4 relational descriptions) are outside the training distribution.

never seen in training? (3) Can we understand the set of relations in a scene and infer semantically
equivalent descriptions?

To answer these questions, we evaluate the proposed method and baselines on image generation,
image editing, and image classification on two main datasets, i.e. CLEVR [19] and iGibson [41].
We also test the image generation performance of the proposed model and baselines on a real-world
dataset i.e. Blocks [27], as shown in Appendix Section B.

3.1 Datasets
CLEVR. We use 50, 000 pairs of images and relational scene descriptions for training. Each image
contains 1 ∼ 5 objects and each object consists of five different attributes, including color, shape,
material, size, and its spatial relation to another object in the same image. There are 9 types of colors,
4 types of shapes, 3 types of materials, 3 types of sizes, and 6 types of relations.

iGibson. On the iGibson dataset, we use 30,000 pairs of images and relational scene descriptions
for training. Each image contains 1 ∼ 3 objects and each object consists of the same five different
types of attributes as the CLEVR dataset. There are 6 types of colors, 5 types of shapes, 4 types of
materials, 2 types of sizes, and 4 types of relations. The objects are randomly placed in the scenes.

Blocks. On the real-world Blocks dataset, a number of 3,000 pairs of images and relational scene
descriptions are used for training. Each image contains 1 ∼ 4 objects and each object differs in color.
We only consider the “above” and “below” relations as objects are placed vertically.

In the training set, each image’s relational scene description only contains one scene relation and
objects are randomly placed in the scene. We generated three test subsets that contain relational scene
descriptions with a different number of scene relations to test the generation ability of the proposed
methods and baselines. The 1R test subset is similar to the training set where each relational scene
description contains one scene relation. The 2R and 3R test subsets have two and three scene relations
in each relational scene description, respectively. Each test set has 5, 000 images with corresponding
relational scene descriptions.

3.2 Baselines
We compare our method with two baseline approaches. The first baseline is StyleGAN2 [21],
one of the state-of-the-art methods for unconditional image generation. To enable StyleGAN2
to generate images and edit images based on relational scene descriptions, we train a ResNet-18
classifier on top of it to predict the object attributes and their relations. Recently, CLIP [35] has
achieved a substantial improvement on the text-image retrieval task by learning good text-image
feature embeddings on large-scale datasets. Thus we design another baseline, StyleGAN2+CLIP, that
combines the capabilities of both approaches. To do this, we encode relational scene descriptions
into text embeddings using CLIP and condition StyleGAN2 on the embeddings to generate images.
Please see Appendix Section F for more details of baselines.

3.3 Image Generation Results
Given a relational scene description, e.g. “a blue cube on top of a red sphere”, we aim to generate
images that contain corresponding objects and their relations as described in the given descriptions.
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Figure 4: Image generation results on the iGibson dataset. Images are generated based on 1 ∼ 2 relational
descriptions. Note that the two composed scene relations are outside the training distribution.

Quantitative comparisons. To evaluate the quality of generated images, we train a binary classifier
to predict whether the generated image contains objects and their relations described in the given
relational scene description.

Given a pair of an image and a relational scene description, we first feed the image to several
convolutional layers to generate an image feature and then send the relational scene description to an
embedding layer followed by several fully connected layers to generate a relational scene feature.
The image feature and relational scene feature are combined and then passed through several fully
connected and finally a sigmoid function to predict whether the given image matches the relational
scene description. The binary classifier is trained on real images from the training dataset. We train
a classifier on each dataset and observe classification accuracy on real images to be close to 100%,
indicating that the classifier is effective. During testing, we generate an image based on a relational
scene description and send the generated image and the relational scene description to the classifier
for prediction. For a fair comparison, we use the same classifier to evaluate images generated by all
the approaches on each dataset.

The “Image Generation” column in Table 1 shows the classification results of different approaches on
the CLEVR and iGibson datasets. On each dataset, we test each method on three test subsets, i.e.
1R, 2R, 3R, and report their binary classification accuracies. Both variants of our proposed approach
outperform StyleGAN2 and StyleGAN2 (CLIP), indicating that our method can generate images that
contain the objects and their relations described in the relational scene descriptions. We find that our
approach using the learned embedding, i.e. Ours (Learned Embed), achieves better performances on
the CLEVR and iGibson datasets than the other variant using the CLIP embedding, i.e. Ours (CLIP).

StyleGAN2 and StyleGAN2 (CLIP) can perform well on the 1R test subset. This is an easier test
subset because the models are trained on images with a single scene relation and the models generate
images based on a single relational scene description during testing as well. The 2R and 3R are
more challenging test subsets because the models need to generate images conditioned on relational
scene descriptions of multiple scene relations. Our models outperform the baselines by a large
margin, indicating the proposed approach has a better generalization ability and can compose multiple
relations that are never seen during training.

Human evaluation results. To further evaluate the performance of the proposed method on image
generation, we conduct a user study to ask humans to evaluate whether the generated images match
the given input scene description. We compare the correctness of the object relations in the generated
images and the input language of our proposed model, i.e. “Ours (Learned Embed)”, and “StyleGAN2
(CLIP)”. Given a language description, we generate an image using “Ours (Learned Embed)” and
“StyleGAN2 (CLIP)”. We shuffle these two generated images and ask the workers to tell which
image has better quality and the object relations match the input language description. We tested 300
examples in total, including 100 examples with 1 sentence relational description (1R), 100 examples
with 2 sentence relational descriptions (2R), and 100 examples with 3 sentence relational descriptions
(3R). There are 32 workers involved in this human experiment.

The workers think that there are 87%, 86%, and 91% of generated examples that “Ours (Learned
Embed)” is better than “StyleGAN2 (CLIP)” for 1R, 2R, and 3R respectively. The human experiment
shows that our proposed method is better than “StyleGAN2 (CLIP)”. The conclusion is coherent with
our binary classification evaluation results.
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Figure 5: Image editing results on the CLEVR dataset. Left: image editing results based on a single relational
scene description. Right: image editing results based on two composed relational scene descriptions. Note that
the composed scene relations in the right part are outside the training distribution and our approach can still edit
the images accurately.

Qualitative comparisons. The image generation results on CLEVR and iGibson scenes are shown in
Figure 3 and 4 respectively. We show examples of generated images conditioned on relational scene
descriptions of different number of scene relations. Our method generates images that are consistent
with the relational scene descriptions. Note that both the proposed method and the baselines are
trained on images that only contain a relational scene description of a single scene relation describing
the visual relationship between two objects in each image. We find that our approach can still
generalize well when composing more visual relations. Taking the upper right figure in Figure 3 as
an example, a relational scene description of multiple scene relations, i.e. “A large blue metal sphere
above a small red rubber cylinder. A large blue metal sphere to the left of a small blue metal cylinder
· · · ”, is never seen during training. “StyleGAN2 (CLIP)” generates wrong objects and scene relations
that are different from the scene descriptions. In contrast, our method has the ability to generalize to
novel relational scenes.

3.4 Image Editing Results
Given an input image, we aim to edit this image based on relational scene descriptions, such as “put a
red cube in front of the blue cylinder”.

Quantitative comparisons. Similar to the image generation, we use a classifier to predict whether
the image after editing contains the objects and their relations described in the relational scene
description. For the evaluation on each dataset, we use the same classifier for both image generation
and image editing.

The “Image Editing” column in Table 1 shows the classification results of different approaches on
the CLEVR and iGibson datasets. Both variants of our proposed approach, i.e. “Ours (CLIP)” and
“Ours (Learned Embed)” outperform the baselines, i.e. “StyleGAN2” and “StyleGAN2 (CLIP)”,
substantially. The good performance of our approach on the 2R and 3R test subsets shows that the
proposed method has a good generalization ability to relational scene descriptions that are outside the
training distribution. The images after editing based on relational scene descriptions can incorporate
the described objects and their relations accurately.

Qualitative comparisons. We show image editing examples in Figure 5. The left part is image editing
results conditioned on a single scene relation while the right part is conditioned on two scene relations.
We show examples that edit images by inverting individual spatial relations between given two objects.
Taking the first image in Figure 5 as an example, “the small purple metal sphere” is behind “the large
yellow rubber sphere”, after editing, our model can successfully put “the small purple metal sphere”
in front of “the large yellow rubber sphere”. Even for relational scene descriptions of two scene
relations that are never seen during training, our model can edit images so that the selected objects
are placed correctly.

3.5 Relational Understanding
We hypothesize the good generation performance of our proposed approach is due to our system’s
understanding of relations and ability to distinguish between different relational scene descriptions.
In this section, we evaluate the relational understanding ability of our proposed method and baselines
by comparing their image-to-text retrieval and semantic equivalence results.

Image-to-text retrieval. In Figure 6, we evaluate whether our proposed model can understand
different relational scene descriptions by image-to-text retrieval. We create a test set that contains 240
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(a) Top 1 image-text retrieval result on iGibson scenes.

(b) Top 1 image-text retrieval result on CLEVR scenes.

(c) Top 1 image-text retrieval result on Blender scenes (outside the training distribution).

Figure 6: Image-to-text retrieval results. We compare the proposed approach with the pretrained CLIP and
fine-tuned CLIP and show their top-1 retrieved relation description based on the given image query.

pairs of images and relational scene descriptions. Given a query image, we compute the similarity of
this image and each relational scene description in the gallery set. The top 1 retrieved relational scene
description is shown in Figure 6. We compare our method with two baselines. We use the pre-trained
CLIP model and test it on our dataset directly. “Fine-tuned CLIP” means the CLIP model is fine-tuned
on our dataset. Even though CLIP has shown good performance on the general image-text retrieval
task, we find that it cannot understand spatial relations well, while EBMs can retrieve all the ground
truth descriptions.

Table 2: Quantitative evaluation of semantic equivalence
on the CLEVR dataset.

Model Semantic Equivalence (%)
1R Acc 2R Acc 3R Acc

Classifier 52.82 27.76 14.92
CLIP 37.02 14.40 5.52
CLIP (Fine-tuned) 60.02 35.38 20.9
Ours (CLIP) 70.68 50.48 38.06
Ours (Learned Emb) 74.76 57.76 44.86

We also find that our approach generalizes
across datasets. In the bottom row of Fig-
ure 6, we conduct an additional image-to-text
retrieval experiment on the Blender [4] scenes
that are never seen during training. Our ap-
proach can still find the correct relational
scene description for the query image.

Can we understand semantically equiva-
lent relational scene descriptions? Given
two relational scene descriptions describing
the same image but in different ways, can our
approach understand that the descriptions are semantically similar or equivalent? To evaluate this,
we create a test subset that contains 5, 000 images and each image has 3 different relational scene
descriptions. There are two relational scene descriptions that match the image but describe the image
in different ways, such as “a cabinet in front of a couch” and “a couch behind a cabinet”. There is
one further description that does not match the image. The relative score difference between the two
ground truth relational scene descriptions should be smaller than the difference between one ground
truth relational scene description and one wrong relational scene description.

We compare our approach with three baselines. For each model, given an image, if the difference
between two semantically equivalent relational scene description is smaller than the difference
between the semantically different ones, we will classify it as correct. We compute the percentage
of correct predictions and show the results in Table 2. Our proposed method outperforms the
baselines substantially, indicating that our EBMs can distinguish semantically equivalent relational
scene descriptions and semantically nonequivalent relational scene descriptions. In Figure 7, we
further show two examples generated by our approach on the iGibson and CLEVR datasets. The
energy difference between the semantically equivalent relational scene description is smaller than the
mismatching pairs.
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Figure 7: Examples of semantic equivalence on CLEVR and iGibson scenes. Given an input image, our
approach is able to recognize whether the relational scene descriptions are semantically equivalent or not.

3.6 Zero-shot Generalization Across Datasets

CLIP CLIP (Fine-tuned) Ours (CLIP) Ours (Learned Emb)
0

1

2

3

4

5

6

7

To
p-

1 
A

cc
ur

ac
y

Figure 8: Zero-shot generalization on
Blender scenes. Our approach with learned
embedding outperforms other methods on
image-to-text retrieval.

We find that our method can generalize across datasets as
shown in the third example in Figure 6. To quantitatively
evaluate the generalization ability across datasets of the
proposed method, we test the image-to-text retrieval ac-
curacy on the Blender dataset. We render a new Blender
dataset using objects including boots, toys, and trucks.
Note that our model and baselines are trained on CLEVR
and have never seen the Blender scenes during training.

We generate a Blender test set that contains 300 pairs of
images and relational scene descriptions. For each image,
we do text retrieval on the 300 relational scene descriptions.
The top 1 accuracy is shown in Figure 8. We compare our
approaches with two baselines, i.e. CLIP and CLIP fine-
tuned on the CLEVR dataset. We find the CLIP model and our approach using the CLIP embedding
perform badly on the Blender dataset. This is because CLIP is not good at modeling relational scene
description, as we have shown in Section 3.5. Our approach using the learned embedding outperforms
other methods, indicating that our EBMs with a good embedding feature can generalize well even on
unseen datasets, such as Blender.

4 Conclusion
In this paper, we demonstrate the potential usage for our model on compositional image generation,
editing, and even generalization on unseen datasets given only relational scene descriptions. Our
results provide evidence that EBMs are a useful class of models to study relational understanding.

One limitation of the current approach is that the evaluated datasets are simpler compared to the
complex relational descriptions used in the real world. A good direction for future work would be to
study how these models scale to complex datasets found in the real world. One particular interest
could be measuring the zero-shot generalization capabilities of the proposed model.

Our system, as with all systems based on neural networks, is susceptible to dataset biases. The
learned relations will exhibit biases if the training datasets are biased. We must take balanced and fair
datasets if we develop our model to solve real-world problems, as otherwise, it could inadvertently
worsen existing societal prejudices and biases.
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Symbiant (reg. no. 030256-00001 90113) and Mitsubishi Electric Research Laboratory (MERL)
under the project Generative Models For Annotated Video. Yilun Du is supported by NSF graduate
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Appendix
In this appendix, we introduce related work in Section A, and then present qualitative and quantitative
comparisons with additional baseline approaches in Section B. We then show the experiment results
on the more complex real world datasets in Section C and additional dataset details in Section D. More
details of our proposed approach and baselines are shown in Section E and Section F, respectively.
We provide the model architecture details of various approaches and their implementation details in
Section H and Section I, respectively. Finally, we show the psuedocode for our algorithm in Section J.

A Related Work
Language Guided Scene Generation. A large body of work has explored scene generation
utilizing text descriptions [13, 17, 20, 30, 34, 36, 38–40, 46–48]. In contrast to our work, prior
work [17, 38, 47, 48] have focused on generating images given only a limited number of relation
descriptions. Recently, [36] shows compelling results on utilizing text to generate images, but also
explicitly state that relational generation was a weakness of the model. In this work, we seek to tackle
how we may generate images given an underlying relational description.

Visual Relation Understanding. To understand visual relations in a scene, many works applied
neural networks to graphs [1–3, 5, 14, 15, 18, 20, 28, 29, 32, 37]. Raposo et al. [37] proposed Relation
Network (RN) to explicitly compute relations from static input scenes while we implicitly encode
relational information to generate and edit images based on given relations and objects. Johnson et al.
[20] proposed to condition image generation on relations by utilizing scene graphs which were further
explored in [1, 14, 15, 18, 29, 31, 44]. However, these approaches require excessive supervisions,
such as bounding boxes, segmentation masks, etc., to infer and generate the underlying relations
in an image. Such a setting restricts the possible combinations of individual relations in a scene.
In our work, we present a method that enables us to generate images given only a relational scene
description.

Energy Based Models. Our work is related to existing work on energy-based models [6, 8, 10,
12, 22, 33, 42, 45]. Most similar to our work is that of [7], which proposes a framework of utilizing
EBMs to compose several object descriptions together. In contrast, in this work, we study the problem
of how we may compose relational descriptions together, an important and challenging task for
existing text description understanding systems.

B Additional Results

Comparison with more baseline approaches. We provide more results of additional baselines in
Table 3. We use the same evaluation metrics as in Table 1 of the main paper. The details of baselines
are described in Section F of this appendix. As shown in Table 3 of this appendix, our approach
achieves the highest accuracy among all the methods for both image generation and image editing.
In Table 3, as noted in the main paper, directly encoding a relational scene description such as “a
large blue rubber cube to the left of a small red metal cube” utilizing CLIP to train an EBM (“EBM
(CLIP) (Full Sentence)”) performs much worse than the proposed method “Ours (CLIP)” and “Ours
(Learned Embed)”.

Additional evaluation metric. In addition to comparing the binary classification accuracy of
different methods as we used in Table 1 of the main paper, we provide an additional evaluation
metric for image generation. We investigate the performance of utilizing the graph-based relational
similarity metric proposed by [9] for image generation. A graph-based relational similarity score is
used to test the correct placement of objects, without requiring the model to draw the objects exactly
in the same locations as the ground truth. Such a metric can construct scene graphs for both the
generated and ground truth images without telling the model to precisely draw objects at the exact
locations. However, it heavily relies on the pre-trained object detector and localizer. The pre-trained
object detector or localizer could generate false predictions on both real images and generated images,
especially when the generated images are out of the training distribution.

As the evaluation metric used in [9] focuses more on the local matching while our binary classification
focuses on the global matching, in this appendix, we further report the results for two baselines
and our approach using the evaluation metric proposed by [9]. The image generation results on
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Table 3: Evaluation of the accuracy of object relations in the generated images or edited images on the CLEVR
and iGibson datasets. We compare our method with baselines on three test sets, i.e. 1R, 2R, and 3R. In Table
1 of the main paper, we had two baselines, i.e. StyleGAN2 and StyleGAN2 (CLIP). Here we add another 3
baselines, i.e. Scene Graph GAN [20], EBM (CLIP) (Full Sentence), and StyleGAN2 (CLIP) (Multi-Relations),
for comparison.

Dataset Model Image Generation (%)
1R Acc 2R Acc 3R Acc

CLEVR

StyleGAN2 10.68 2.46 0.54
StyleGAN2 (CLIP) 65.98 9.56 1.78

StyleGAN2 (CLIP) (Multi-Relations) 66.62 9.60 1.68
Scene Graph GAN 83.72 14.18 4.48

EBM (CLIP) (Full Sentence) 4.75 0.24 0.00
Ours (CLIP) 94.79 48.42 18.00

Ours (Learned Embed) 97.79 69.55 37.60

iGibson

StyleGAN2 12.46 2.24 0.60
StyleGAN2 (CLIP) 49.20 17.06 5.10

StyleGAN2 (CLIP) (Multi-Relations) 36.94 13.42 6.86
Scene Graph GAN 54.64 0.02 0.00

EBM (CLIP) (Full Sentence) 34.25 8.05 3.47
Ours (CLIP) 74.02 43.04 19.59

Ours (Learned Embed) 78.27 45.03 19.39

Table 4: Comparison of different methods on the CLEVR dataset. The accuracy of graph-based relational
similarity proposed by [9] is reported.

Model Relational Similarity (%)
1R Acc 2R Acc 3R Acc

StyleGAN2 22.37 19.75 17.13
StyleGAN2 (CLIP) 37.50 28.62 28.75
Ours (Learned Emb) 50.77 36.87 42.50

the CLEVR dataset are listed in Table 4. The conclusion obtained by using this new metric is
coherent with using our binary classification metric (Table 1 of the main paper): our proposed method
outperforms the baselines.

Additional qualitative results. We show more qualitative results of image generation in Figure 9
and Figure 10. Our approach can generate images with correct relations, and can even generalize to
relational scene descriptions that are out of the training distribution.

C Image Generation Results on Real World Datasets

In terms of image generation on real scenes, we train and evaluate our model on two real-world
datasets, the Blocks dataset [27] and the Visual Genome dataset [24].

The Blocks dataset is from [27] and we train our model using the object relations, e.g. “above”
and “below”. We show the images generated conditioned on two relational descriptions and three
relational descriptions in Figure 11.

For the Visual Genome dataset [24], we train our models on a subset that consists of common objects
and relations for computational efficiency. As shown in Figure 12, we find that the CLIP text encoder
performs better, as it has seen large-scale image-text pairs that cover a wide range of relations,
attributes and objects.

Our approach is able to generate images (objects and their relations) matching the given language
descriptions on the real-world Blocks dataset and the Visual Genome dataset. The quality of generated
images on the Blocks dataset is great. However, the quality of results on the Visual Genome dataset
is a bit worse. We believe that the generation quality could be further improved.
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Figure 9: Image generation results on the CLEVR dataset. Image are generated based on 2 relational descriptions.
Note that the models are trained on a single relational description and the two composed scene relations are
outside the training distribution. Our approaches “Ours (CLIP)” and “Ours (Learned Embed)” are able to
generate images accurately based on the input scene descriptions.

D Datasets Details

CLEVR. On the CLEVR dataset, each image contains 1 ∼ 5 objects and each object consists of
five different attributes, including color, shape, material, size, and its relation to another object in the
same image. There are 9 types of colors, 4 types of shapes, 3 types of materials, 3 types of sizes, and
6 types of relations. The objects are randomly placed in the scenes.

iGibson. On the iGibson dataset, each image contains 1 ∼ 3 objects and each object consists of the
same five different types of attributes as the CLEVR dataset. There are 6 types of colors, 5 types
of shapes, 4 types of materials, 2 types of sizes, and 4 types of relations. The objects are randomly
placed in the scenes.

Blocks. On the real-world Blocks dataset, each image contains 1 ∼ 4 cubes and each cube only
differs in color. Objects in the images are placed vertically in the form of towers.

There are 50,000, 30,000 and 3,000 training images on the CLEVR, iGibson and Blocks datasets,
respectively, and 5,000 testing images on both the CLEVR and iGibson datasets. We test the zero-shot
generalization across datasets using the blender data. There are three types of objects, including
trucks, toys, and boots. We generated 5,000 testing images with each image contains 1 ∼ 3 objects
for the Blocks dataset. There is no overlap between the training and testing data on each dataset.

E Details of Our Approaches

Ours (CLIP). In our EBM setting, we use the pre-trained CLIP model to encode objects and a
learned embedding layer to encode their relations. Taking the scene description of “a large blue
rubber cube to the left of a small red metal cube” as an example, we use the pre-trained CLIP model
to encode the two objects seperately, i.e. o1 for “a large blue rubber cube” and o2 for “a small red
metal cube”. We then use an embedding layer to encode their relation, i.e. r′ for “to the left”. The
features of the first and second objects and their relations are concatenated and used as the feature of
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Figure 10: Image generation results on the iGibson dataset. Image are generated based on 2 relational descriptions.
Note that the models are trained on a single relational description and the two composed scene relations are
outside the training distribution. Our approaches “Ours (CLIP)” and “Ours (Learned Embed)” are able to
generate images accurately based on the input scene descriptions.

the relational scene description which is further send to the relational energy functions Eθ for image
generation or image editting.

Ours (Learned Embed). Different from “Ours (CLIP)”, “Ours (Learned Embed)” uses the learned
embedding layers for both objects and their relations. To encode an object, we use 6 different
embedding layers to learn its color, size, material, shape, relation and position, seperately. The
embedded features of objects and their relations are concatenated and used as the feature of the
relational scene description which is further sent to the relational energy functions Eθ for image
generation or image editting.

F Details of Baselines

StyleGAN2. In Section 4.2 of the main paper, we used the unconditional StyleGAN2 [21] as one
of the baselines. We train the unconditional StyleGAN2 and the ResNet-18 classifier separately on
each dataset. For training, we use the default setting provided by [21]. To generate an image with
respect to a particular relation, we optimize the underlying latent code to minimize the loss from the
classifier.

StyleGAN2 (CLIP). StyleGAN2 (CLIP) is the same as StyleGAN2 except that StyleGAN2 (CLIP)
uses the text encoder of the CLIP model [35] to encode relational scene descriptions. We follow the
same configuration as the StyleGAN2 to train StyleGAN2 (CLIP).

StyleGAN2 (CLIP) (Multi-Relations). StyleGAN2 (CLIP) (Multi-Relations) has the same model
architecture as StyleGAN2 (CLIP) but is trained with more scene relations. In StyleGAN2 (CLIP),
we only use a single scene relation during training while StyleGAN2 (CLIP) (Multi-Relations) uses
1 ∼ 3 scene relations.

Scene Graph GAN. We apply the models from [20] and utilize the extracted scene graphs as input
to train a conditional StyleGAN2. As there is no object bounding boxes available in our setting, we
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Figure 11: Image generation results on the Block dataset. Image are generated based on 2 or 3 relational
descriptions. Note that the models are trained on a single relational description and the composed scene relations
(2 and 3 relational descriptions) are outside the training distribution. Our approach “Ours (Learned Embed)” is
able to generate images accurately based on the input scene descriptions.

Ours
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EBM
(CLIP) 

(Full Sentence)

Building next 
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Figure 12: Image generation results on the Visual Genome dataset. “EBM (CLIP) (Full Sentence)” performs
better than our approach “Ours (Learned Emb)” on generating more complex natural images because pretrained
CLIP text encoder has seen large-scale image-text pairs that cover a wide range of relations and objects.

set the input bounding box to be the whole image frame and our input scene graphs only consist of
two objects and their relation.

EBM (CLIP) (Full Sentence). In this setting, we use the text encoder of CLIP to encode every
word in the relational scene descriptions. Such a holistic encoder has a bad performance as shown in
Table 3, Figure 9, Figure 10 and Figure 11.

G Inference Details

In this section, we introduce the inference details of image generation and image editing using our
proposed method.
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Table 5: We use the multi-scale model architecture to compute energies as in [8].

3x3 Conv2d 128

CondResBlock 128

CondResBlock Down 128

CondResBlock 128

CondResBlock Down 256

Self-Attention 256

CondResBlock 256

CondResBlock Down 256

CondResBlock 512

CondResBlock Down 512

Global Mean Pooling

Dense→ 1

3x3 Conv2d 128

CondResBlock 128

CondResBlock Down 128

CondResBlock 128

CondResBlock Down 128

Self-Attention 256

CondResBlock 256

CondResBlock Down 256

Global Mean Pooling

Dense→ 1

3x3 Conv2d 128

CondResBlock 128

CondResBlock Down 128

Self-Attention 128

CondResBlock 128

CondResBlock Down 128

Global Mean Pooling

Dense→ 1

Image Generation. Given an input scene description and the random noise map, we run 10
alternating series of data augmentation and Langevin sampling to get an intermediate result. Then we
run the Langevin sampling 80 steps to generate the final image.

Image Editing. After splitting a relational scene description into corresponding input labels, we
simply run Langevin sampling on the input image with 80 steps to generate the final image. The step
size used in image editing applies the same rule as we used in image generation.

H Model Architecture Details

We follow the implementation of EBMs from [8] in our experiments. Similar to [8], we use the
multi-scale model architecture to compute energies as shown in Table 5. Each model generates an
energy value and the final energy Eθ(x) is the sum of energies from all the models listed in Table 5.
Given relational scene descriptions, we generate or edit images based on the final energy.

I Implementation Details

StyleGAN2. It takes 2 days to train the StyleGAN2 model and 2 hours to train the classifier using a
single Tesla 32GB GPU on each dataset. We use the Adam optimizer [23] with β1 = 0, β2 = 0.99,
and ϵ = 10−8 to train the model.

StyleGAN2 (CLIP). For StyleGAN2 (CLIP) and StyleGAN2 (CLIP) (Multi-Relations), it takes
around 2 days to train each of them on each dataset using a single Tesla 32GB GPU. We use the
Adam optimizer [23] with β1 = 0, β2 = 0.99, and ϵ = 10−8 to train them.

Scene Graph GAN. We train the model on each dataset with the default training configuration
provided in the codebase from [20] for 2 days using a single Tesla 32GB GPU. We use the Adam
optimizer [23] with β1 = 0.9, β2 = 0.999, and ϵ = 10−4 to train the model.

EBMs (i.e., Ours (CLIP), Ours (Learned Embed), EBM (CLIP) (Full Sentence)). In our
experiments, we use the same setting to train models using EBMs, i.e., Ours (CLIP), Ours (Learned
Embed), and EBM (CLIP) (Full Sentence), for fair comparison. We use the Adam optimizer [23]
with learning rates of 10−4 and 2 × 10−4 on the CLEVR and iGibson datasets, respectively. For
MCMC sampling, we use a step size of 300 on the CLEVR dataset, 750 on the iGibson dataset and
300 on the Blocks dataset. On each dataset, the model is trained for 3 days on a single Tesla 32GB
GPU.
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To generate images at test time, we initialize an image sample from random noise. We then iteratively
apply data augmentation on the image sample followed by 20 steps of Langevin sampling. To
generate the final image, we run 80 additional steps of Langevin sampling on the image sample.

To edit images at test time, we run 80 steps of Langevin sampling on the image to edit. The step
size of Langevin sampling is inversely proportional to the number of scene relations, i.e. more scene
relations leads to a lower Langevin sampling step size.

J Algorithms

We provide the algorithms of the proposed method, including training, image generation, image
editing, and image-to-text retrieval, in Algorithm 1, 2, 3 and 4, respectively.

Algorithm 1 Conditional EBM training algorithm
Input: data dist pD(x), relational scene descriptions RD(r), step size λ, number of steps K, data augmenta-
tion D(·), stop gradient operator Ω(·), EBM Eθ(·), Encoder Enc(·)
B ← ∅
while not converged do

x+
i ∼ pD

Ri ∼ RD

x̃0
i ∼ B with 99% probability and U otherwise

X ∼ B for nearest neighbor entropy calculation

▷ Split a relational scene description into individual scene relations:
{r1, . . . rm} ← Ri

▷ Apply data augmentation to sample:
x̃0

i = D(x̃0
i )

▷ Generate sample using Langevin dynamics:
for sample step k = 1 to K do

x̃k−1
i = Ω(x̃k−1

i )

x̃k ← x̃k−1 −∇x

∑m
j=1 Eθ(x̃

k−1 | Enc(rj)) + ω, ω ∼ N (0, σ)
end for

▷ Generate two variants of x− with and without gradient propagation:
x−

i = Ω(x̃k
i )

x̂−
i = x̃k

i

▷ Optimize objective LCD + LKL wrt θ:
LCD = 1

N

∑
i

∑m
j=1(Eθ(x

+
i | Enc(rj)− Eθ(x

−
i | Enc(rj))

LKL =
∑m

j=1 EΩ(θ)(x̂
−
i | Enc(rj))− log(NN(x̂−

i , X)

▷ Optimize objective LCD + LKL wrt θ:
∆θ ← ∇θ(LCD + LKL)
Update θ based on ∆θ using Adam optimizer

▷ Update replay buffer B
B ← B ∪ x̃−

i

end while
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Algorithm 2 Image generation during testing
Input: Relational scene description R, number of data augmentation applications N , step size λ, number of
steps K, data augmentation D(·), EBM Eθ(·), Encoder Enc(·)
x̃0 ∼ U

▷ Split a relational scene description into individual scene relations:
{r1, . . . rm} ← R

▷ Generate samples through N iterative steps of data augmentation/Langevin dynamics:
for sample step n = 1 to N do

▷ Apply data augmentation to samples:
x̃0 = D(x̃0

i )

▷ Run K steps of Langevin dynamics:
for sample step k = 1 to K do

x̃k ← x̃k−1 −
∑n

i=1∇xEθ(x̃
k−1 | Enc(ri)) + ω, ω ∼ N (0, σ)

end for

▷ Iteratively refine samples:
x̃0 = x̃k

end for

▷ Final output:
x = x̃0

Algorithm 3 Image editing during testing
Input: input image x̃0, relational scene description R, number of data augmentation applications N , step
size λ, number of steps K, data augmentation D(·), EBM Eθ(·) Encoder Enc(·)
▷ Split a relational scene description into individual scene relations:
{r1, . . . rm} ← R

▷ Generate samples through N iterative steps of data augmentation/Langevin dynamics:
for sample step n = 1 to N do

▷ Apply data augmentation to samples:
x̃0 = D(x̃0

i )

▷ Run K steps of Langevin dynamics:
for sample step k = 1 to K do

x̃k ← x̃k−1 −
∑n

i=1∇xEθ(x̃
k−1 | Enc(ri)) + ω, ω ∼ N (0, σ)

end for

▷ Iteratively refine samples:
x̃0 = x̃k

end for

▷ Final output:
x = x̃0

Algorithm 4 Image-to-text retrieval during testing
Input: input image x, relational scene descriptions {R1, . . . , Rn}, EBM Eθ(·), Encoder Enc(·), output
energy list O, caption prediction C
O ← []

▷ Generate image-caption matching energies iteratively
for number of scene relations descriptions i = 1 to n do

▷ Split a relational scene description into individual scene relations:
{r1, . . . rm} ← Ri

ei =
∑m

j=1 Eθ(x | Enc(rj))

▷ output energy list O
O.append(ei)

end for

▷ Final output:
C = argminO
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