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Abstract

DALL·E has shown an impressive ability to generate novel—significantly and
systematically different from the training distribution—yet realistic images. This
is possible because it utilizes the dataset of text-image pairs where the text pro-
vides the source of compositionality. Following this result, an important extending
question is whether this compositionality can still be achieved even without condi-
tioning on text. In this paper, we propose a simple but novel slot-based autoencod-
ing architecture, called SLATE1, that achieves this text-free DALL·E by learning
compositional slot-based representations purely from images, an ability lacking in
DALL·E. Unlike existing object-centric representation models that decode pixels
independently for each slot and each pixel location and compose them via mixture-
based alpha composition, we propose to use the Image GPT decoder conditioned
on the slots for a more flexible generation by capturing complex interaction among
the pixels and the slots. In experiments, we show that this simple architecture
achieves zero-shot generation of novel images without text and better quality in
generation than the models based on mixture decoders.

1 Introduction

Unsupervised learning of compositional representation is a core ability of human intelligence (Yuille
& Kersten, 2006; Frankland & Greene, 2020). Observing a visual scene, we perceive it not simply
as a monolithic entity but as a geometric composition of key components such as objects, borders,
and space (Kulkarni et al., 2015; Yuille & Kersten, 2006; Epstein et al., 2017; Behrens et al., 2018).
Furthermore, this structured understanding about the scene composition enables the ability of zero-
shot imagination, i.e., composing a novel, counterfactual, or systematically manipulated scenes which
are significantly different from the training distribution, e.g., “what if I move the chair to the other
room”. As such, realizing this ability has been considered the core challenge in building a human-like
AI system (Lake et al., 2017).

DALL·E (Ramesh et al., 2021) has recently shown an impressive result for zero-shot imagination.
Trained with a dataset of text-image pairs, DALL·E can generate plausible images even from an
unfamiliar text prompt such as “avocado chair” or “lettuce hedgehog”. However, from the perspective
of compositionality, the success of zero-shot imagination of DALL·E is arguably realizable with ease
because of the fact that composable representation is already provided inherently in the form of the
text prompt. That is, the text is already discretized into a sequence of composable concept modules,
i.e., words, each of which is encapsulated as a reusable word vector. Given this, its Image GPT (Chen
et al., 2020b) decoder learns to produce an image by smoothly stitching over the discretized concepts.

Extending from the success of DALL·E, an important question would probably be if we can achieve
such zero-shot imagination only from images without text as we humans can do. This would require

1The implementation is available at https://github.com/singhgautam/slate

1st CtrlGen: Controllable Generative Modeling in Language and Vision Workshop at NeurIPS 2021.

https://github.com/singhgautam/slate


Figure 1: Overview of our proposed model with respect to prior works. Left: In DALL·E, words in the
input text act as the composable units for generating the desired novel image. The generated images have global
consistency because each pixel depends non-linearly on all previous pixels and the input word embeddings.
Middle: Unlike DALL·E that requires text supervision, Slot Attention provides an auto-encoding framework
in which object slots act as the composable units inferred purely from raw images. However during rendering,
object slots are composed via a simple weighted sum of pixels obtained without any dependency on other pixels
and slots which harms image consistency and quality. Right: Our model combines the best of both models. Like
Slot Attention our model is free of text-based supervision and like DALL·E, produces novel image compositions
with global consistency.

an ability lacking in DALL·E: extracting a set of composable representation from an image. The
most relevant approach toward this direction is object-centric representation learning (Greff et al.,
2019; Locatello et al., 2020; Lin et al., 2020b; Jiang et al., 2019; Chen et al., 2020a). While it can
obtain a set of slots from an input image and reconstruct the same image from the slots, its ability to
reconfigure an arbitrary set of slots for zero-shot imagination is significantly limited. We find that this
is due to the mixture-based decoder used in these models which decodes each slot and pixel rather
independently.

In this paper, we propose a simple architecture that can combine the best of DALL·E and object-
centric representation learning. That is, like DALL·E, our model can do zero-shot imagination but by
learning a set of slot representations from the input image without relying on text prompt. The key
idea is simple: to combine the slot-attention with the Image GPT decoder used in DALL·E. We call
the proposed model SLot Attention TransformEr or SLATE. In the experiments, we show that this
simple architecture achieves the zero-shot generation of novel images but without text, better quality
in generation than the models based on mixture decoders, and also provides structured relational
representation

The contribution of the paper is a new architecture that can be seen as either a text-free DALL·E
or an object-centric representation and generation model that significantly improves the systematic
out-of-distribution generalization ability in image generation. Our result suggests for the first time
that an Image GPT decoder can be used for object-centric representation learning, making it much
simpler and more effective than previous approaches.

2 Background

2.1 Object-Centric Learning and Current Limitations in Compositional Generation

Object-centric learning is commonly done via an auto-encoding framework (Locatello et al., 2020;
Burgess et al., 2019) in which an encoder takes an input image and returns a set of object represen-
tations or slots s1:N = fφ(x). The slots are then provided to a decoder that composes the objects
represented by the slots and reconstructs the image x̂ = gθ(s1:N ). In these models, the architecture
of the decoder gθ implements some form of domain knowledge about how the object slots are
composed to produce the final output image. The most common composition approach assumes that
the generated image is a pixel-wise weighted mean of image components (Locatello et al., 2020;
Burgess et al., 2019; Lin et al., 2020b). To do this, the decoder first decodes the image component
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µn and the corresponding masks πn for each slot n as follows:

µn = gRGB
θ (sn) πn =

exp gmask
θ (sn)∑N

m=1 exp gmask
θ (sm)

where gRGB
θ and gmask

θ decode the RGB component and the mask weights, respectively, for a specific
object. These are then combined using a pixel-wise weighted mean to produce the final image as
x̂i =

∑N
n=1 πn,i · µn,i where i ∈ [1, HW ] is the pixel index and H and W are the image height and

width, respectively. While such alpha composition may work for simple synthetic images, this model
suffers in generation quality when we attempt to do object composition in more realistic images. The
key failure mode occurs because each object component gRGB

θ (sn) and its mask weight gmask
θ (sm)

are decoded for each slot independently without incorporating the information about other slots.
Because of this, when object slots selected from different input images are composed, the rendered
image may become incoherent. For instance, when objects and their shadows are modeled as separate
components, novel combinations of slots may result in shadows that become inconsistent with the
object.

In this work, we shall lift the use of inductive biases such as alpha composition for rendering the scenes
by making use of Transformer (Vaswani et al., 2017) as our image decoder. Our central hypothesis is
that a powerful auto-regressive decoder such as Transformer after training with sufficiently diverse
set of raw images should learn the rules of composition implicitly without domain specifications.

2.2 Image GPT and DALL·E

Image GPT (Chen et al., 2020a) is a generative model for images implemented using Transformer
(Vaswani et al., 2017; Brown et al., 2020). To train the model, Image GPT first down-scales the
image of size H ×W by a factor of K using a VQ-VAE encoder (van den Oord et al., 2017). This
makes the training of Transformer less costly. Thus an image x becomes a sequence of image tokens
{zi} where i indexes the tokens in a raster-scan order from 1 to HW/K2. The transformer is trained
to model an auto-regressive distribution over this token sequence by maximizing the log-likelihood∑
i log pθ(zi|z<i). During generation, the transformer samples the image tokens sequentially. This

process may be described as ẑi ∼ pθ(ẑi|ẑ<i) where ẑi is the image token generated for the position
i in the sequence. Once all the tokens for the sequence are generated, these tokens {ẑi} are provided
to a VQ-VAE decoder to generate the image x̂.

It has been shown that Image GPT performs accurate image generation and completion given the
upper half of the image. Because it is able to generate consistent images containing multiple objects,
this suggests that Image GPT has implicitly learned “object models" about how to render those
individual objects and how to compose multiple objects together such that the generated image is
consistent with the true underlying image generating process.

DALL·E (Ramesh et al., 2021) shows that this image generating ability of Image GPT can be
controlled using text prompts. DALL·E models the distribution over the tokens of the image
conditioned on the tokens of the text prompt. The process for generating the image given the
text may be described as ẑi ∼ pθ(ẑi|ẑ<i, c1:N ) where c1:N are the representations of N tokens of
the text prompt on which the image generation is conditioned and ẑi is the image token at position
i. However, in this approach for controlling image generation, a key limitation is that it requires
supervision in terms of text-image pairs. In our work, instead of using text supervision, we shall
show that composable object representations can be inferred directly from raw images without any
supervision and these representations can be used to condition the image generation of an Image
GPT decoder. By composing arbitrary object representations obtained from arbitrary input images,
we show that our decoder has the ability to render novel scenes such that the generated image is
consistent with the true underlying image generating process.

3 SLATE: Slot Attention Transformer

Our aim is to infer object-centric representations or simply slots from an input image and use the
slots to condition the Transformer decoder to reconstruct the image as a sequence of pixels.

Obtaining Image Tokens using DVAE. To make the training of transformer computationally feasible
for high-resolution images, we first downscale the input image x of size H ×W by a factor of K
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using Discrete VAE (Im et al., 2017). To do this, we split the image into K × K-sized patches
resulting in T patches where T = HW/K2. We provide each patch xi as input to an encoder network
fφ to return log probabilities (denoted as oi) for a categorical distribution with V classes. With these
log probabilities, we use a relaxed categorical distribution (Jang et al., 2016) with a temperature τ to
sample a relaxed one-hot vector zsoft

i . We then decode these codes to obtain reconstructions of the
patches.

oi = fφ(xi),

zsoft
i ∼ RelaxedCategorical(oi; τ),

x̃i = gθ(z
soft
i ).

By minimizing an MSE reconstruction objective for the image patches i.e. LDVAE =
∑T
i=1(x̃i−xi)

2,
we train the DVAE encoder fφ(·) and decoder gθ(·) networks.

Inferring Object Slots. To infer the object slots from a given image x, we first use the DVAE
encoder as described above to obtain an image token zi for each patch i. Next, we map each code zi
to an embedding by using a learned dictionary. To incorporate the position information into these
patch embeddings, we add learned positional embeddings. This results in an embedding ui which
now has both the content and the position information. These embeddings u1:T are then given as
input to a Slot-Attention encoder (Locatello et al., 2020) with N slots.

oi = fφ(xi),

zi ∼ Categorical(oi),
ui = Dictionaryφ(zi) + pφ,i,

s1:N , A1:N = SlotAttentionφ(u1:T ).

This results in N object slots s1:N and N attention maps A1:N from the last refinement iteration of
the Slot-Attention encoder.

Reconstruction using Transformer. To reconstruct the input image, we use the slots s1:N to first
reconstruct the DVAE code ẑ1:T using a Transformer. We then use the DVAE decoder gθ to decode
the DVAE code and reconstruct the image patches x̂i.

ôi = Transformerθ(û<i; s1:N ),

ẑi = arg max
v∈[1,V ]

ôi,v,

x̂i = gθ(ẑi).

where ûi = Dictionaryφ(ẑi) + pφ,i and ôi,v is the log probability of token v among the V classes of
the categorical distribution represented by ôi. As the training objective for transformer, we minimize
the cross-entropy of predicting each token zi given all the preceding tokens z<i and the slots s1:N .
Let the predicted log-probabilities for the token at position i be ōi = Transformerθ(u<i; s1:N ). Then
the cross-entropy objective can be written as LST =

∑T
i=1 CrossEntropy(zi, ōi).

Learning Objective and Training. The complete training objective is given by L = LST + LDVAE
and all modules of our model are trained jointly. We apply a decay on the DVAE temperature τ from
1.0 to 0.1 at the start of the training. We also apply a learning rate warm-up for the parameters of
Slot-Attention and Transformer at the start of the training as we found that this led to stable training.

3.1 Concept Library

The above model extracts a set of concepts or slots that describe an image whereas an intelligent
agent would build a library of reusable concepts from diverse experience. In DALL·E, a vocabulary
of words with learned embeddings plays the role of this library and provides reusable concepts even
though the concepts or the words are pre-defined rather than constructed from experience.

To build a library of concepts from experience, in our experiments, we shall use the following simple
approach based on K-means clustering to construct a library of reusable visual concepts. (i) Collect
N slots Si = {si1, . . . , siN} and their attention maps Ai = {Ai1, . . . , AiN} from each image i in the
training dataset. (ii) Run K-means clustering on S =

⋃
i Si with cosine similarity between slots as a

distance metric where K is the number of total concepts in the library. In cases when object position
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is more important for building the concept library, it might be more natural to cluster the slots via
IOU between the attention maps as a distance metric. (iii) Use each cluster as a concept and the
slots assigned to the cluster as the instantiations of the concept. (iv) To compose an arbitrary image,
choose the concepts from the library and randomly choose a slot for each concept. (v) Provide this
set of slots to the decoder to compose and generate an image. Here, choosing concept vectors is like
composing a text prompt in DALL·E. But in our case, our prompt is an order-less set of slots.

Considering that an agent may collect new experience (or images) indefinitely, it is an interesting
future direction to scale this idea to large K and apply online clustering (Liberty et al., 2016) or
Bayesian non-parametric clustering (Neal, 2000).

3.2 Multi-headed Slot Attention

For representing images, slots of standard Slot Attention encoder (Locatello et al., 2020) can suffer
in expressiveness when representing objects with complex shapes and textures. This is because the
slots collect information from the input cells via dot-product attention in which the attended input
values are pooled using a simple weighted mean. As such, this pooling method can be too weak
for representing complex objects. To address this, we propose an extension of Slot Attention called
Multi-headed Slot Attention in which each slot attends to the input cells via multiple heads. This
allows each slot to attend to different parts of the same object. When the slot state is computed,
the attended values of different heads are concatenated which allows these partial object features
to interact more flexibly and produce a significantly better object representation. Full details of the
implementation and an ablation experiment to show the benefits of multiple heads are provided in
Appendix A.2.

4 Related Work

Compositional Generation via Object-Centric Learning. Self-supervised object-centric ap-
proaches (Burgess et al., 2019; Greff et al., 2019; Locatello et al., 2020; Kabra et al., 2021; Greff
et al., 2017; Engelcke et al., 2020, 2021; Eslami et al., 2016; Crawford & Pineau, 2019b; Lin et al.,
2020b; Jiang & Ahn, 2020; Kosiorek et al., 2018; Jiang et al., 2019; Crawford & Pineau, 2019a; Lin
et al., 2020a; Deng et al., 2021; Anciukevicius et al., 2020; von Kügelgen et al., 2020; Wu et al.,
2021) typically perform mixture-based alpha compositing for rendering with contents of each slot
decoded independently. Savarese et al. (2021) and Yang et al. (2020) rely on minimizing mutual
information between predicted object segments as a learning signal while Yang et al. (2021) leverage
optical flow. However, these approaches either cannot compose novel scenes or require specialized
losses for object discovery unlike ours which uses a simple reconstruction loss. DINO (Caron et al.,
2021) combining Vision Transformer (Dosovitskiy et al., 2021) and a self-supervised representation
learning objective (Chen et al., 2020b; He et al., 2020; Grill et al., 2020; Touvron et al., 2021; Hinton,
2021; van den Oord et al., 2018) discovers object-centric attention maps but, unlike ours, cannot
compose novel scenes. TIMs (Lamb et al., 2021) attach an image encoder (Goyal et al., 2021) to
an Image GPT decoder and show object-centric attention maps but, unlike ours, do not investigate
compositional generation.

Compositional Generation using GANs. Chai et al. (2021) show compositional generation using
a collage of patches encoded and decoded using a pretrained GAN. However, the collage needs to
be provided manually and object discovery requires a specialized process unlike our model. Bielski
& Favaro (2019) and Chen et al. (2019) show object discovery from given images by randomly re-
drawing or adding a random jitter (Voynov et al., 2021) to the foreground followed by an adversarial
loss. As these models use alpha compositing, their compositional ability is limited. Some works
(Donahue et al., 2016; Donahue & Simonyan, 2019) infer abstract representations for images that
emphasize the high-level semantics, but these, unlike ours, cannot be used for compositional image
generation. Niemeyer & Geiger (2021), Nguyen-Phuoc et al. (2020); Chen et al. (2016), van
Steenkiste et al. (2020), Liao et al. (2020) and Ehrhardt et al. (2020) introduce GANs which generate
images conditioned on object-wise or factor-wise noise and optionally on camera pose. Lacking
an inference module, these cannot perform compositional editing of a given image unlike ours.
While Kwak & Zhang (2016) provide an encoder to discover objects, the decoding relies on alpha
compositing. Reed et al. (2016a) show controlled compositional generation in GANs and improved
generation quality (Johnson et al., 2018; Hinz et al., 2019) via an object-centric or a key-point based
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FID (↓)
Dataset SA Ours

Shapestacks 155.74 51.27
Bitmoji 71.43 15.83

(a) Compositional Generation

MSE (↓) FID (↓)
Dataset SA Ours SA Ours

Shapestacks 233.72 111.86 139.72 30.22
Bitmoji 388.72 261.10 67.66 11.89

(b) Image Reconstruction

Table 1: Comparison of Compositional Generation (left) and Image Reconstruction (right) between Slot-
Attention (SA) and our model. For comparison of compositional generation, we report FID score. For image
reconstruction quality, we report MSE and FID score.

pathway for scene rendering. However, these require supervision for the bounding boxes and the
keypoints.

Compositional Generation with Latent Variable Models and Text. An early line of approaches
focused on disentangling the independent factors of the observation generating process using β-VAE
(Higgins et al., 2017) or ensuring that independently sampling each latent factor should produce
images indistinguishable from the training distribution (Kim & Mnih, 2018; Kumar et al., 2017;
Chen et al., 2018). However unlike ours, these approaches can suffer in multi-object scenes (Jiang &
Ahn, 2020) due to superposition catastrophe (Greff et al., 2020). Another line of approaches learn
to map text to images to compose novel scenes (Ramesh et al., 2021; Reed et al., 2016b; Li et al.,
2019; Higgins et al., 2018) or map attribute-value pairs to images (Sohn et al., 2015; Yan et al., 2016).
However such approaches rely on supervision.

5 Experiments

In experiments, we evaluate whether a Transformer decoder instead of a mixture decoder can provide
benefits in: 1) generating novel scenes from unseen combinations of slots, 2) image reconstruction,
and 3) generating novel scenes that do not belong to the training image distribution. For this, we
compare our model with Slot Attention (Locatello et al., 2020) which, like ours, uses a slot-based
encoder but uses a mixture decoder for decoding. We evaluate the models on 2 datasets: Shapestacks
(Groth et al., 2018) and Bitmoji (Graux, 2021). In each dataset, a scene can be described in terms of
composable entities such as blocks, walls, floors, hair or face. Our models take only raw images as
inputs without any other supervision or annotations.

5.1 Compositional Image Generation.

In DALL·E, unseen text prompts were used to generate novel scenes. Similarly, in our text-free
model, we evaluate whether novel scene generation is possible by providing unseen combinations of
slots as the prompt for our Image GPT decoder.

To build slot prompts, we first build a concept library using K-means as described in Section 3.1.
In Bitmoji, we apply K-means clustering on the slots. This results in clusters for dress, hair, neck,
eyes, face and collar. These clusters make up our concept library and are visualized in Appendix C.
To build novel prompts from this library, we simply pick one slot from each cluster. In Shapestacks
dataset, object positions are more important and thus we slightly modify the above approach to build
the prompts. We first sample a set of random positions on the canvas in a vertical tower configuration.
Then for each of these positions, we then sample a slot from the concept library. In this way, we
generate 40000 prompts for each dataset and render the corresponding images. We then evaluate
the realness of the images by computing FID score with respect to the true images. To support this
metric, we also report the training curves of a CNN discriminator that tries to classify between real
and model-generated images. If generated images are close to the true data distribution, then they
should be harder for the discriminator to discriminate and the resulting training curve should converge
more slowly.

Better Visual Quality. From Figure 2a and Table 1a, we note that our compositional generations are
significantly more realistic than the generations from the mixture decoder. This is also supported by
qualitative samples shown in Figures 2b and 4.
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(a) Discriminator Training Curves (b) Compositional Generation Samples in Bitmoji

Figure 2: Comparison of compositional generation between Slot Attention and our model. Left: Com-
parison of training curves of a discriminator to compare the quality of compositional generation between
Slot-Attention and our model. A CNN discriminator receives either a real image or a model-generated image and
tries to classify between real and fake. A slow converging curve is better. Right: We visualize the set of slots
that the model receives as prompt and we visualize the composed scene returned by the model. We visualize
the slots in the prompt by showing source image masked using the input attention map of that slot. Note that
these attention maps had emerged in the source images implicitly without any supervision. We also note the
limitations of mixture decoder of Slot Attention which produces incoherent compositions. For instance, the
white background from the face slot can incorrectly mask the hair slot which is not the desired composition.

Figure 3: Scene Editing by Replacing Slots in Bitmoji. We show that in our model, it is possible to edit the
image by taking a specific slot and replacing it with an arbitrary slot drawn from the concept library for the same
concept.

Better Global Consistency. In Figure 2b, we visualize the compositions for Bitmoji datasets. These
results show that the mixture decoder is unable to consistently combine the slots provided in the
prompt. In Bitmoji, the mixture components of the source images interact incorrectly leading to
inaccurate compositions. In comparison, our model is significantly more robust to this inconsistency
problem when performing novel compositions.

Compositional Scene Editing. In our model, it is also possible to edit a given scene by inferring the
slot representation and then replacing the slot with another one taken from the concept library. In
Figure 3 (and Figure 7 in Appendix), we show compositional editing on Bitmoji dataset.

5.2 Reconstruction Quality

A natural test about whether an auto-encoder learns accurate representations of the given input is
through an evaluation of the reconstruction error. For this, we report two metrics: 1) MSE to evaluate
how well the reconstructed image preserves the contents of the original image and 2) FID score to
show how realistic is the reconstructed image with respect to the true image distribution. We compute
these metrics on a held-out set and report in Table 1b.

We find that our model outperforms Slot Attention in all datasets in terms of FID and MSE which
shows that the image quality of our model is better. We also note qualitatively that Slot Attention
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Figure 4: Compositional generation in Shapestacks Dataset. We provide 4 object slots and the background
slots in the slot prompt and generate compositions.

renders more blurry images with fewer details than ours. One reason for this is Spatial Broadcast
decoder (Watters et al., 2019) which is a weak decoder used for rendering object components in
Slot Attention. Prior works use Spatial Broadcast decoder to bias the decoder towards simple object
components and encourage disentanglement of objects into separate slots. However, our results show
that such inductive biases are not needed and we do not need to trade-off image quality with object
discovery (see Appendix D.1).

6 Conclusion

We presented a model for zero-shot imagination by learning slot representations from the input image.
Our model combines the best of DALL·E and object-centric representation learning. It achieves novel
scene composition without text while also providing significant improvement in generation quality
over mixture-based decoders. Because we do not make any design choices specific to images, it is an
interesting direction to explore our model on other domains such as text or audio.

7 Broader Impact

The current version of the model does not generate images realistic enough for negative societal
impact. However future versions of the model with more computation, larger datasets, and better
tuning may generate images with such impact. However, this is not imminent.
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A SLATE

A.1 Architecture

Figure 5: Architecture of SLATE. Our model receives an input image and we split it into patches. We encode
each patch as a discrete token using a feedforward network (shown as the DVAE encoder). A DVAE decoder is
trained to reconstruct each patch from its respective token using a simple MSE loss. We shall call this the DVAE
reconstruction and this provides one of the two reconstruction pathways that we have in our architecture. For
the second reconstruction pathway, the tokens obtained from the DVAE encoder are mapped to embeddings.
To these embeddings, we add learned positional embedding to add the position information to the embedding
of each token or the respective image patch. These resulting set of embeddings are provided as input to Slot
Attention to discover N slots that summarize the contents of the discrete tokens and thereby summarizing the
input image. The slots are then provided to a Transformer decoder which is trained to decode and reconstruct the
discrete tokens of the input image using a cross-entropy loss. Given the slots, the tokens can be generated by the
Transformer auto-regressively and then be decoded via the DVAE decoder to produce a reconstruction of the
input image. This forms the slot-based reconstruction pathway and, unless specified, the term reconstruction
would refer to this slot-based pathway.

A.2 Multi-headed Slot Attention

In Slot-Attention (Locatello et al., 2020), each slot undergoes several rounds of interactions with
the input image in order to collect the contents for the slot representation. In each iteration, this
interaction of a slot with the input image is performed using dot-product attention with slot as the
query. The value returned by this attention is a simple weighted sum of the input cells being attended
by the slot. This weighted sum as a pooling method and method of interaction between the attended
cells can be insufficient for properly representing the attended cells. This is especially the case when
the object has a complex shape and texture. To address this, we propose a multi-headed extension of
slot attention. In this, we replace the dot-product attention with a multi-headed dot-product attention.
By doing this, each slot attends to the different parts of the same object simultaneously and the result
of the attention is concatenated. As this concatenated result passes through the RNN layers, these
features for different parts of the same object can interact flexibly and result in a more rich encoding
of the attended object. Recall that in standard slot attention, because there is only one attention head,
different parts of the same object can only interact via the weighted sum which serves as a weak form
of interaction as our results below shall indicate.

Implementation. We implement iterations of the Multi-headed Slot Attention as follows. For a
given iteration, we first project the slots S = s1:N from the previous iteration into query vectors for
each head. Similarly, we project the input cells U = u1:T into key and value vectors for each head.

Qm = WQ
mS,

Km = WK
mU,

Vm = WV
mU.

Next, we compute unnormalized attention proportions for each head m as by taking a dot-product as
follows:

QmKT
m√

DK

.
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where DK is the size of the key vectors. The attention map over the input cells An,m for slot n and
head m is obtained by taking a softmax over both the N slots and the M heads.

[A1:N,1; . . . ;A1:N,M ] = softmax(
[Q1K

T
1√

DK

; . . . ;
QMKT

M√
DK

]
, dim = ‘slots’ and ‘heads’).

We then obtain the attention result for a given slot n as follows.

updatesn = [An,1V1; . . . ;An,MVM ]WO (1)

where and WO is an output projection matrix. With this update vector, the slot state is updated as
follows as done in the standard Slot Attention (Locatello et al., 2020).

sn ← GRU(updatesn, sn),

sn ← sn + MLP(LayerNorm(sn)).

This results in the update slot that is given to the next iteration.

Results. We apply Multi-headed Slot Attention in the Bitmoji dataset for our model. We found
significant improvement in the MSE when we used 4 heads as compared to the standard Slot Attention
(equivalent to 1 head). This is reported in Table 2.

Model MSE

Ours (num_slot_heads=1, num_slots=8) 391.15
Ours (num_slot_heads=1, num_slots=15) 371.05
Ours (num_slot_heads=4, num_slots=8) 136.29

Table 2: Effect of number of slots and number of slot heads on the reconstruction quality in Bitmoji dataset in
SLATE. We compare the benefits of increasing the number of heads in our slot attention module and the effect
of increasing the number of slots. We note that simply increasing the number of slots (from 8 to 15) does not
improve the reconstruction quality significantly. However, increasing the number of heads (from 1 to 4) while
keeping the number of slots same significantly improves the reconstruction quality.

We also noted that when using mixture decoder, using multi-headed slot attention does not help
because the performance bottleneck is the Spatial Broadcast decoder (Watters et al., 2019) of the
mixture decoder. This comparison is shown in Table 3.

Model MSE

SA (num_slot_heads=1, num_slots=8) 394.5
SA (num_slot_heads=4, num_slots=8) 410.1

Table 3: Effect of number of slot heads on the reconstruction quality in Bitmoji dataset using Slot Attention (SA)
with mixture-decoder. We note that with mixture decoder, having multiple heads does not benefit reconstruction
as the performance bottleneck is the weak object component decoder based on Spatial Broadcast decoder
(Watters et al., 2019)

Limitations. While multi-head attention helps information in the slots, in datasets with simple
objects, having multiple heads can harm disentanglement of objects into different slots. This can
occur because as each slots becomes more expressive, the network may be incentivised to collect
information about multiple objects into the same slot. Therefore for our experiments on Shapestacks,
we used regular slot attention module with 1 head. Because Bitmoji can have complex hair and face
shapes, we used 4-headed slot attention module for this dataset in our model.
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B Hyperparameters and Computational Requirements

We report the hyperparameters and the computational requirements for training our model in Table 4.

Dataset Shapestacks Bitmoji

Batch Size 50 50
LR Warmup Steps 30000 30000
Peak LR 0.0003 0.0001
Dropout 0.1 0.1

DVAE

Vocabulary Size 4096 4096
Temp. Cooldown 1.0 to 0.1 1.0 to 0.1
Temp. Cooldown Steps 30000 30000
LR (no warmup) 0.0003 0.0003

Image Size 96 128
Image Tokens 576 1024

Transformer Decoder
Specifications

Layers 8 8
Heads 8 8
Hidden Dim. 192 192

Slot Attention
Specifications

Slots 12 8
Iterations 7 3
Slot Dim. 192 192

Training Cost GPU Usage 14GB 64GB
Days 5 Days 3.5 Days

Table 4: Hyperparameters used for our model and computation requirements for each dataset.

Dropout. We found it beneficial to perform dropout during training of our model. We apply attention
dropout of 0.1 in the transformer decoder. We also apply the same dropout of 0.1 after positional
embedding is added to the patch token embedding i.e.

ui ← Dropout(Dictionaryφ(zi) + pφ,i, dropout=0.1).

Learning Rate Schedules. For training the parameters of DVAE, we noted that a constant learning
rate of 3e-4 produced good discretization of patches and low reconstruction error of the patches
decoded from the DVAE code. Smaller learning rates lead to poorer use of the dictionary and poorer
reconstruction of patches.

For the weights of slot attention encoder, the transformer and the learned embeddings, we found a
learning rate warm-up schedule helpful. For this warm-up, we increase the learning rate linearly
from 0.0 to the peak learning rate in the first 30K training steps. After this, at the end of every epoch,
we monitor the loss on the validation set. If the validation loss does not decrease for 8 consecutive
epochs, we reduce the learning rate by a factor of 1/2.
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C Additional Qualitative Results

Figure 6: Clusters in the concept library obtained by applying K-means on slots obtained from the Bitmoji
dataset.
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Figure 7: Qualitative Results for Hair Slot Replacements in Bitmoji dataset. For each image, the first row shows
the hair slot that will be used as a replacement and the second row shows the generation from our model after
the hair slot is replaced.
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Figure 8: Qualitative Results for Compositional Generation in Bitmoji dataset using our model.
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Figure 9: Qualitative Results for Compositional Generation in Bitmoji dataset using Slot Attention.
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Figure 10: Qualitative Comparison of Compositional Generation in Shapestacks.
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D Discussion

D.1 Strong Decoder in Mixture Likelihood Models Make Slots Capture Multiple Objects

One of the attractive properties of our model is that our Transformer decoder produces images with
significantly better detail than Slot Attention. Slot Attention fails to render such details largely
because of Spatial Broadcast Decoder that is used to render each object component. Spatial Broadcast
Decoder decodes images by mapping a pixel coordinate and the provided slot vector to RGB pixel
values and a mask using an MLP. This MLP prefers to learn simple mappings from pixel coordinate
to RGB values. At the start of the training, this function tends to be a constant or a linear function of
pixel coordinate and only after more training does this function achieve a more complex input-output
behavior.

Hence, when a Spatial Broadcast Decoder is used, the decoder of each object component is biased in
early training to prefer modeling segments without much RGB variation within the object patch. This
property is important to guide the training of Slot Attention encoder to learn to disentangle separate
objects and it has been exploited in several prior works on unsupervised object-centric representation
learning. To understand why this occurs, consider a grayscale image that contains two balls, one
colored white with pixel value 1.0 and the other colored grey with pixel value 0.5. Now consider the
case when each slot represents one object in the scene. In this case, the decoder for the white ball
simply needs to output a value 1.0 for all pixel coordinates and this is a constant function. Similarly,
for the grey ball, the decoder needs to output a value 0.5 for all pixel coordinates. In contrast, consider
the case where a single slot represents both the white and the grey balls. In this case, the decoder
needs to map the pixels coordinates for the white ball to 1.0 and the pixel coordinates for the grey
ball to 0.5 within the same function. This function is not longer a constant and is therefore much
more complex than the functions that arose when each slot modeled separate objects. Furthermore,
as objects might be positioned randomly, this mapping needs to quickly change when the positions of
the balls change in the scene depending on information from the slot representation. This makes the
mapping even more complex when more than one objects are modeled by the same slot. Hence, the
network naturally prefers to model and decode different objects via different slots. As a result, the
encoder is incentivized to cluster the pixels of the input image into objects. While this property could
be utilized in simple datasets which have objects without much RGB variation and detail within the
object, it can fail to render images properly in datasets such as Shapestacks with floor with complex
textures or Bitmoji with complex face details and the shape of the hair.

Figure 11: Analysis of decoder capacity in Slot Attention when using a mixture-based likelihood model for
decoding. We note that when we use a powerful CNN decoder to decode the RGB components and decoding
masks for the objects, then a single component tries to model all the objects in the scene instead of each slot
representing a single object as in the case of Spatial Broadcast decoder.

While one may argue that this could be fixed simply by replacing the Spatial Broadcast Decoder
with a more powerful decoder for the object components. However, because weak decoder was
encouraging the disentanglement of objects as argued above, hence by the same argument, when a
powerful decoder is used, a single slot no longer has the incentive to model one object. Thus each
slot can try to represent and model more than one object in the scene. We tested this empirically by
replacing the Spatial Broadcast Decoder of Slot Attention with a powerful CNN decoder. We found
that this causes the slots to capture multiple objects and in some cases a single slot may try to model
all the contents of the scene as a single object segment. This is shown in Figure 11.
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Figure 12: Reconstruction and attention maps of slots in SLATE given the input images for Shapestacks. We
note that attention maps effectively localize on the individual blocks.

Hence for unsupervised object discovery, this historically presented a trade-off between decoding
capacity and the ability of the model to disentangle the objects. In contrast, our work shows that such
a trade-off can be eliminated if Transformer is used as the decoder. Our model can not only detect
objects without supervision but also render their fine details during decoding. See Figures 12 and 13.
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Figure 13: Reconstruction and attention maps of slots in SLATE given the input images for Bitmoji. We
note that attention maps effectively localize on the individual meaningful segments of the faces.
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