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Abstract

Few-shot image generation is a task of generating high-quality and diverse images
well fitted to the target domain. The generative model should adapt from the
source domain to the target domain given a few images. Despite recent progresses
in generative models, cutting edge generative models (e.g., GANs) still suffer
from synthesizing high-quality and diverse images in few-shot setting. One of
the biggest hurdles is that the number of images from the target domain is too
small to approximate the true distribution of the target domain. To this end, the
effective approach for the few-shot adaption is required to address the problem. In
this paper, we propose a simple yet effective method C3, Contrastive Learning for
Cross-domain Correspondence. C3 method constitutes the positive and negative
pairs of images from two different domains and makes the generative model learn
the cross-domain correspondence (i.e., semantic mapping from the source domain
to the target domain) explicitly via contrastive learning. As a result, our proposed
method generates more realistic and diverse images compared to the baseline
methods and outperforms the state-of-the-art approaches on photorealistic and
non-photorealistic domains.

1 Introduction

Deep generative models (e.g., GANs) have shown remarkable success in various image synthesis
domains, including text-to-image generation [1, 2, 3, 4, 5], image-to-image translation [6, 7, 8], and
image manipulation [9, 10, 11]. However, cutting edge deep generative models still suffer from
synthesizing high-quality and diverse images using a limited number of images. Recent studies
[12, 13, 14, 15, 16] have explored such constrained image generation task under the name of few-shot
image generation, where the generative model should adapt from the source domain to the target
domain given a few images. In few-shot image generation, the generative model is typically trained
on a large-scale image dataset (e.g., FFHQ [17]) from the source domain and performs the few-shot
adaptation on the target domain.

One of the biggest hurdles in few-shot image generation is that the number of given images from the
target domain – typically less than ten images – is too small to approximate the true distribution of
the target domain. Accordingly, the efficient domain adaptation mechanism is required to address the
problem. Previous works have addressed the problem with transfer learning technique [12], auxiliary
network [18], and regularization tricks [13, 14, 15, 16]. Notably, CDC [16] proposed the cross-
domain correspondence to preserve the semantic similarity between the source and target domain.
Specifically, CDC computes the pairwise distances among images from the source domain and
transfers the distribution of pairwise distances to the target domain, encouraging that the distribution
from the source domain matches the distribution from the target domain. However, we argue that
existing methods for few-shot image generation have shown limited domain adaptation capabilities in
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that they have implicitly attempted to transfer the knowledge from the source to the target domain
without any direct mapping from the source to target images.

In this paper, we propose a simple yet effective approach C3, Contrastive Learning for Cross-domain
Correspondence, that learns the cross-domain correspondence in an explicit way. Specifically, the
generative model (i.e., GANs) firstly generates the target images given the latent vector z sampled
from the latent space. Then, C3 constitutes the positive and negative pairs from the source and
target image feature vectors and optimizes the pairwise distances via contrastive learning. From this
pipeline, our proposed method makes the generative model to learn the distinctive attributes that the
positive pair of images should share. Fig. 1 shows the overview of our approach, C3.

The main contributions of our paper are as follows. First, we propose C3 method for few-shot image
generation. By leveraging contrastive learning, the generative model learns the semantic similarity
between the source and target domain. Second, we validate the effectiveness of our proposed
method on photorealistic and non-photorealistic domains by comparing C3 with the state-of-the-art
approaches. Finally, we perform qualitative analysis of our model, demonstrating that C3 makes the
generative model synthesize high-quality and diverse images.

2 Related Work

Few-shot generative models Recently, several studies on few-shot learning have been conducted
for generative tasks[19, 20, 18, 14, 13, 16, 15]. In generative task, a few-shot learner aims to
generate high-quality and diverse images given in small amount of examples while preventing the
generative model over-fitting. Basically, most works follow a training phase, where transfer prior
knowledge of pre-trained model on source domain to target model for fitting to a smaller target
domain[18, 14, 13, 16, 15]. In previous works, [14], [13] reduce the number of network parameters
that changed during adapting to target domain avoiding over-fitting. [18] introduces a small network
for transforming source latent space to other latent space, which is more relevant to target domain.
[15] uses a regularization term that is applied differently to learnable parameters depending on the
importance during adaptation. [16] also uses regularization term, which enforcing relative similarity
between source and corresponding target images. In contrast to prior work, our approach directly
applies contrastive learning for semantic correspondence between source and target domains.

Contrastive learning for image synthesis Contrastive learning is to learn a metric space where
similar sample pairs stay close to each other while dissimilar ones are distant. Contrastive learning
has shown effectiveness for self-supervised representation learning[21, 22, 23, 24, 25]. Due to its
powerful representation learning performance, contrastive learning has been used extensively in
image synthesis such as conditional image generation[26, 27], text-to-image generation [4, 28, 5],
image-to-image translation [29, 30]. In terms of maintaining the structure of the source domain
during adaptation, image-to-image translation is more relevant to few-shot image generation than
other tasks. In that works, [29] uses patchwise contrastive loss to maximize mutual information
between the corresponding patches of source image and target image. [30] uses contrastive loss in
both generator and discriminator for learning representations between real, reference, and augmented
images. To our best knowledge, this work first uses contrastive learning for unconditional image
generation given on few shot target data.

3 Method

3.1 Problem formulation

In this subsection, we formally describe the problem of few-shot image generation. Given a few
images from a target domain Dt, the target generator Gs→t adapts from the source domain to the
target domain. The target generator is typically trained on a large-scale source dataset (e.g., FFHQ
[17]) before the few-shot adaptation. Formally,

Gs→t = Ez∼pz(z),x∼Dt
argmin

G
max
D
Ladv(G,D) (1)

Ladv = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log (1−D (G(z)))] (2)

where z ∼ pz(z) and x ∼ pdata(x) denote the latent vectors and the samples from real data,
respectively. Note that the same noise vectors z are used in generating the source and target images.
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Figure 1: An overview of our approach, C3. The source image is an anchor (orange box). Positive
pair consists of an anchor and target image (+ on green box) from the same latent vector mapped to
anchor. Negative pairs consist of anchor and others (- on green box) from different latent vectors
within minibatch. C3 makes semantic similarity of corresponding pair (positive pair) high during
adaptation, otherwise vice versa.

Ladv(G,D) is the adversarial loss for Generative Adversarial Networks (GANs). However, as
previous works [15, 16] demonstrated, a naive domain transfer described above tends to be over-
fitting to target domain in few shot settings. Over-fitted target model reproduces training data, not
generating diverse images. In other words, an effective regularization technique is required to mitigate
the over-fitting problem. In the following sections, we carefully describe the contrastive learning
method for cross-domain correspondence (Sec. 3.2.) and final objective functions for C3 (Sec. 3.3.).

3.2 Contrastive loss for cross-domain correspondence

In few shot image generation, over-fitting occurs when many latent vectors are mapped to just few
images. This is because the goal of the generator in GANs is just fooling the discriminator with
the high-quality generated images. The diversity is not explicitly considered in the goal. We then
hypothesize that given on few target data, if source and target images from same latent vectors are
semantically well-aligned while adaptation, target generator can generate diverse images avoiding
over-fitting. To achieve this, we maximize the mutual information between the corresponding pair
which should maintain high semantic similarity. Since it is difficult to directly maximize mutual
information, we alternatively use contrastive loss for maximizing the lower bound of the mutual
information. Given source image Gs(z) and target image Gt(z) from same latent variable z ∼ pz(z),
we define a score function following previous work [21, 22, 23] on contrastive learning.

Ssim(Gs(z), Gt(z)) = cos(f(Gs(z)), f(Gt(z)))/τ (3)

where cos(u, v) = uT v/‖u‖‖v‖ denotes cosine similarity and τ denotes a temperature hyper-
parameter. f is an encoder network to extract feature maps from source and target images. we use
pre-trained VGG16[31] network as f . The contrastive loss between Gs(zi) and Gt(zi) is computed
as:

Lcon (Gs(zi), Gt(zi)) = − log
exp (cos (f (Gs(zi)) , f (Gt(zi))) /τ)∑M
j=1 exp (cos (f (Gs(zi) , f (Gt(zj)) /τ)

(4)

Contrastive loss takes output of the encoder for source and target image from same latent vector
as corresponding pair(positive pair) otherwise as negative pairs within minibatch size M . This
loss makes target generator keeping semantic similarity with source generator, which helps prevent
over-fitting while adapting to target domain.
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3.3 Final objective

Our final objective consists of Ladv and Lcon:

Gs→t = argmin
G

max
Dpatch

Ladv(G,Dpatch) + λconLcon(G,Gs) (5)

Ladv is an adversarial loss for training Generative Adversarial Networks(GANs), and Lcon is a
contrastive loss for keeping source-target semantic similarity while adapting to target domain. λcon
is regularization weight to balance between adversarial loss and contrastive loss. Dpatch means
patch discriminator [32], which tries to discriminate if each N × N patch in an image is real or
fake. If N is smaller than the full size of the image, the patch discriminator classifies the whole
image as real or fake based on the part of the image. In few-shot generative setting, using patch
discriminator can give degree of freedom to generator generating diverse images compared with when
using image discriminator [16]. We use patch discriminator following previous work [16]. However,
the difference between the previous work and our work is that we do not use patch discriminator and
image discriminator together, but only patch discriminator simply. Only using patch discriminator
shows the competitive results.

4 Experimental Results

In this section, we describe the details of our experiments. We then compare our method and baselines
in qualitative and quantitative. We use the StyleGANv2 architecture [33]1, pre-trained on a each large
dataset (e.g., FFHQ[17], LSUN-Church) as our source model following [16]. Resolution images are
also 256 × 256 both on source and target images. Adaptation is also done on 10 images from the
target domain following [16]. We use effective patch size of patch discriminator as range from 61 ×
61 to 189 × 189 and use batch size of 4 and temperature parameter τ as 0.1. Empirically, we observe
that λcon, from 0.05 to 0.2, to work well.

Dataset We use several source/target domains of datasets for experiments. We choose source domains
as 3 categories: 1) Real faces (FFHQ [17]), 2) Real Object (LSUN-Church), 3) Real Animal (LSUN-
Cat). We then adapt to 4 categories of datasets as target domain based on distance with source domain:
1) Real faces (FFHQ-Babies, FFHQ-sunglasses), 2) Artistic faces (face sketches [34], face paintings
by Modigliani [35], face paintings by Raphael), 3) Artistic Object (haunted houses, Van Gogh’s house
paintings), 4) Real animal faces (AFHQ-dog [36])

Baselines We set baselines among methods using pre-trained model as source model to adapt to
target domains with limited data. 1) TGAN[12] : fine-tunes without regularization to target model
from pre-trained source model. 2) TGAN+ADA[37] : fine-tunes to target model with only data
augmentation 3) BSA[13] : Except parameters of other layers in source model, update only scale
and shift parameters in the normalization layers. 4) FreezeD[14] : freezes the lower layers of
discriminator for reducing parameter changed during adaptation 5) MineGAN[18]2 : introduces
auxiliary network called miner for transforming source latent space to another latent space. This
is for finding latent space relevant with target for adaptation. 6) EWC[15] : applies regularization
term as Elastic Weight Consolidation[38] by penalizing important parameters of source model being
should not to change large while adapting to target domain. 7) CDC[16]3 : avoiding over-fitting,
computes the distribution of the pairwise distances among images from the source domain to enforce
cross-domain correspondence between source model and target model.

Evaluation metrics Following previous work [16], we report two standard metrics for quantitative
results between proposed method and baselines: Frechet Inception Distance(FID)[39] and Learned
Perceptual Image Patch Similarity(LPIPS) [40]. For calculating Frechet Inception Distance(FID),
we generate 10,000 images randomly by adapted target model and use the entire target dataset, not
10 images for training. This is for assessing that target model learns true target distribution well or
not. But FID score as few-shot metric does not capture over-fitting problem [41], so we report LPIPS
score for assessing diversity. As in [16], we generate 1,000 images randomly and assign each image

1https://github.com/rosinality/stylegan2-pytorch
2https://github.com/yaxingwang/MineGAN/tree/master/styleGANv2
3https://github.com/utkarshojha/few-shot-gan-adaptation
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into i-th cluster based on the lowest LPIPS among k clusters where k equals the number of training
samples. Then we compute the average LPIPS score within members of the same cluster and average
over k clusters. If target generator just reproduces training data, then LPIPS score will be almost
zero.

Figure 2: Adaptation results for different main methods to target domains given on 10-shot target
data. we observe that some baselines generate images similar to training data and others generate
diverse images but are less realistic. Our method generates better quality images while keeping
correspondence to the source domain.
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4.1 Qualitative and quantitative results

Qualitative results Fig. 2 shows the results of several primary methods on three target domains
depending on distance with source domain. All methods starting from same pre-trained source
model, which is initialized on FFHQ adapt to FFHQ-babies (top), FFHQ-sunglasses (middle), and
Face Sketches (bottom). FFHQ-babies and FFHQ-sunglasses are relatively near to source domain
compared to Face sketches because Face sketches are also face domain but have quite different
textures, styles with source domain.

In near distance case (top, middle), we observe that images generated by MineGAN have no semantic
similarity such as pose, expressions with source images, and have poor quality. In contrast, images
generated by other methods maintained structural consistency with source images. But, results for
EWC show less realistic as of blurry. CDC performs better than EWC by generating more realistic
images. However, some attributes (e.g., chin or beard) are not properly changed (row 1, 4, 5 in top),
or some images are somewhat artificial (row 2, 4 in middle). So they look unnatural than images
generated by our method.

In far distance case (bottom), MineGAN just reproduces training data as in near distance case. EWC,
unlike in near distance case, cannot generate images well (row 2) or generate similar images even if
source images are quite different each other (row 1, 5). In all cases, our method outperforms other
methods in generating higher quality and diverse images.

To show that the effectiveness of our method is not limited to real human face domain, other domain
adaptation results by our method are shown in Fig. 3. a) LSUN-Church -> Van Gogh’s house
paintings, haunted house. b) FFHQ[17] -> Modigliani [35], Raphael. c) LSUN-Cat -> AFHQ-dog
[36]. We observe that other domain adaptation results are also well-showing correspondence with
source images. Especially in the case of LSUN-Cat→ AFHQ-Dog, as shown in Fig. 3, LSUN-Cat is
not a dataset containing only well-exposed animal faces, but the entire body or poorly exposed faces.
But, even in that case, our method can capture semantic correspondence with source images while
adaptation(row 1).

Figure 3: Other domain adaptation results by our method. target data is also 10-shot. In all above
domains, generated images resemble structure of source images such as face pose, building structure
depending on source domain.

Quantitative results Table 1 shows the quantitative comparison results between different methods
for assessing image quality. Compared to other methods, it can be seen that our method is the
most adaptable to target domains as it records the lowest FID score with the most realistic result in
qualitative results. However, as pointed out by previous studies [41, 16], in a few shot settings, the
over-fitting problem cannot be captured, so the LPIPS score is shown in Table 2 to assess the diversity
of generated images.
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Babies Sunglasses Sketches
TGAN [12] 104.79 55.61 53.41

TGAN+ADA [37] 102.58 53.64 66.99
BSA [13] 140.34 76.12 69.32

FreezeD [14] 110.92 51.29 46.54
MineGAN [18] 98.23 68.91 64.34

EWC [15] 87.41 59.73 71.25
CDC [16] 74.39 42.13 45.67

Ours 67.55± 2.23 36.69± 2.63 41.50± 1.64

Table 1: FID scores (↓) for target domains with entire target data. Reported scores of baselines are
referenced in [16]. Standard deviations are computed across 5 random runs.

Babies Sunglasses Sketches
MineGAN [18] 0.52± 0.03 0.43± 0.04 0.40± 0.05

EWC [15] 0.58± 0.01 0.58± 0.01 0.42± 0.03
CDC [16] 0.57± 0.02 0.57± 0.02 0.45± 0.02

Ours 0.58± 0.02 0.56± 0.01 0.45± 0.03

Table 2: LPIPS scores(↑) for adapted results. Standard deviations is computed across the target
samples(In this case 10) following in [16]

In Table 2, MineGAN scored the lowest LPIPS score for all datasets. This is because MineGAN
generates target images similar to training data without any correspondence with source images. On
the other hand, EWC, CDC, and our method show similar scores for all datasets. In short, according
to Table 1 and Table 2, These methods can generate diverse images but, our method can generate
more realistic target images than other methods.

4.2 N-shot settings

In this subsection, we explore the cases when target data is less than 10-shot. Because the number of
training data is a key factor of few shot image generation, it’s need to investigate how the dataset
size affects the quality and diversity of the adaptation results. We set up this exploration using Face
sketches[34] as target domain. Fig. 4 shows the results when target data is given on 1-shot, 5-shot,
and 10-shot. In the case of 1-shot, the appearance of the images is almost the same, but only the
poses and facial expressions have limited variations to a target data. In the case of 5-shot setting,
generated images have distinct characteristics by appearance not limited to small changes such as
pose, expression. In 10-shot setting, results show more diverse and detailed images than when there
are fewer target data.

Figure 4: Adaptation results on different target data size. The larger target data size, our method can
generate more diverse and detailed images. Even if given on 1-shot target data, generated images
reflect weak correspondence like pose and expressions with source images.
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4.3 Effect of λcon value

The λcon parameter controls the balance between adaptation and keeping semantic similarity with
source domain. In this subsection, we explore the effect of λcon using two target domains: Face
paintings by Modigliani[35] and Raphael. As shown in Fig. 5, The larger the λcon, the more parts like
the pose, expressions, and visual features of the source images remain strong on adaptation results.
On the contrary, the smaller the λcon, the weaker the tendency to maintain correspondence with the
source, which may cause over-fitting to target domain. It is shown in row 4, 5 in Fig. 5. Source
images (row 4, 5) are quite different with each other, but adapted results are almost the same as each
other. However, when λcon is larger than 0, the generated images show diversity with correspondence
to source images.

Figure 5: Effect of λcon on adaptation results. The larger λcon, visual features of source images
remain strong on adapted images. Conversely, the smaller λcon, the weaker the adaptation results
reflect the correspondence with the source images.

5 Conclusion

In few-shot image generation, over-fitting to the few target data can easily happen, which hinders to
generate diverse and high-quality images on target domain. To alleviate this problem, we propose
C3 method to enforce the cross-domain correspondence directly between source and target domain
in few-shot image generation. By transferring the prior knowledge of a pre-trained model while
keeping cross-domain correspondence, it is possible for the adapted model to generate new images
of the target domain, avoiding over-fitting. Experimental results on multiple datasets demonstrate
the effectiveness of our approach. We believe that C3 can be seamlessly applicable to other few-shot
image generation models.
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