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Abstract

Although virtual agents are increasingly situated in environments where natural
language is the most effective mode of interaction with humans, these exchanges
are rarely used as an opportunity for learning. Leveraging language interactions
effectively requires addressing limitations in the two most common approaches to
language grounding: semantic parsers built on top of fixed object categories are
precise but inflexible and end-to-end models are maximally expressive, but fickle
and opaque. Our goal is to develop a system that balances the strengths of each
approach so that users can teach agents new instructions that generalize broadly
from a single example. We introduce the idea of neural abstructions: a set of
constraints on the inference procedure of a label-conditioned generative model that
can affect the meaning of the label in context. Starting from a core programming
language that operates over abstructions, users can define increasingly complex
mappings from natural language to actions. We show that with this method a user
population is able to build a semantic parser for an open-ended house modification
task in Minecraft. The semantic parser that results is both flexible and expressive:
the percentage of utterances sourced from redefinitions increases steadily over the
course of 191 total exchanges, achieving a final value of 28%. 1

1 Introduction

As language learning agents become embodied in virtual and physical worlds alongside users, they
are presented with the opportunity to curate rich data from humans for little to no cost. For example,
when an agent misunderstands something, it can simply ask the human for input and guidance.
Humans can explain unfamiliar concepts and describe procedures for accomplishing new tasks.
Making these exchanges frictionless—and perhaps even beneficial to the user—incentivizes the
human and agent to collaboratively construct rich mappings from natural language to actions or
programs. However, the current machine learning toolkit needs stronger solutions for learning from
complex instructions quickly and robustly. The goal of this work is to develop tools that allow users to
define new instructions for a natural language system that can be adopted immediately and generally.

Wang et al. [65] first demonstrated how a user population can collaboratively create a more natural
interface into a set of programs. The authors create a programming language for the task of building
structures in voxel-based environment. Users then naturalize this programming language by providing
pairings between natural language requests and programs. However, this model is very brittle as there
is no room for users to specify distributions over object categories. For example, a reference to a tree
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Figure 1: (left) Abstructions define a set of generative models and associated constraints so that
they can be repurposed to represent arbitrarily complex reference objects. (right) Abstructions enable
single-shot transfer of user-defined commands, enabling the emergence of a semantic parser that
develops precision and flexibility in a target environment.

can only ever refer to one instantiation of “tree”. Perhaps, we could enumerate all possible reference
objects and develop generative or discriminative models to stand in for those references [32], but
these approaches ignore a whole class of creative design problems where fixed object categories
are not expressive enough to capture all potential user commands. Another alternative is to build
end-to-end models that directly map language to a given modality with no modularity governing the
interface between them [39, 37, 49], but these approaches suffer from the opacity and brittleness for
which deep learning is infamous. Maintaining reliability helps users have a consistent and enjoyable
experience with a language-equipped agent.

We introduce the concept of abstructions, a characterization of the generative models and user control
inputs that enable the emergence of a flexible yet precise semantic parser from interactions with a
population of users. Instead of beginning with a collection of fixed object categories, our parser
binds language to a set of label-conditioned generative models. The parser is also made aware of
constraints that affect the quality, performance, and meaning of these generative models, such as the
initial location, build prompt, and length of generation. Adding these constraints to the generation
process can change the meaning of a given model’s output in context, as illustrated in Figure 1. Our
blend of generative models and sets of constraints on them allows us to build a semantic parser that is
sensitive to context while being able to adapt robustly to category knowledge given to us by users.

We evaluate the ability of a user population to develop a precise yet flexible semantic parser from
abstructions in a creative building task in Minecraft using the CraftAssist [22] framework. Specifically,
users are placed in a Minecraft session with our language agent and are instructed to make any desired
modifications to a given house by talking directly with the agent. We show that over time, users rely
increasingly on induced utterances and that the number of failed parses decreases. We demonstrate
how newly defined commands can be applied to a wide variety of homes, immediately after being
defined. Collectively, these results show that abstructions have the potential to create a language
interface that blends precision and flexibility unlike past approaches to language grounding.

2 Related Work

Vision and Language. Static, supervised datasets have served as the foundation for bridging
language to various modalities. A rich body of work focuses on the development of machine
learning models that can successfully describe, reason about, and navigate within the visual world.
In developing solutions [69, 18, 19, 3, 17, 46, 39, 57, 47, 50] for language and video descriptions
[38, 54, 36] and visual question answering [6, 29, 15], researchers have identified critical limitations
in the modern toolkit for multi-modal learning. Significant ablations don’t result in significant
performance drops [16, 34], vision is “ignored” in favor of language cues that are well correlated with
prediction [51, 63], and models overfit to spurious correlations [13] that undermine generalization
[1]. Many of these concerns have been addressed by curating balanced datasets [2, 31, 58, 21, 60],
introducing auxiliary losses that counteract spurious correlations [48], and designing models with
modularity in mind [5, 68, 40, 28]. But, disembodied from the environment in which the data was
collected, agents are deprived of rich interactions to further structure their learning.
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Structuring Other Modalities with Language. Language data can provide structure and insight
for tasks that don’t require it explicitly. Leveraging the compositionality of language by including it
as an additional training input can improve classification performance in fine-grained [25] or few-shot
[44] settings and can improve exploration when used to set goals intrinsically for reinforcement
learning [14]. Language can also provide explanations for visual classification decisions, which gives
practitioners insight into spurious correlations learned by visual models [26, 27, 43]. Most similar to
our contribution is work that uses language feedback at training [20, 61, 56] or inference [52] time to
guide and improve prediction results. However, instead of using language as an additional input at
training or inference, we use natural language commands in combination with other user inputs to
predict a set of constraints that affects the inference procedure of a generative model.

Learning Actions from Commands. The goal of our work is to learn a mapping from natural
language instructions to actions. Some general frameworks for mapping instructions to actions
include language-conditioned reinforcement learning [11, 8, 10], semantic parsers learned from
supervision [23, 55], and a supervised mapping from instruction to action [42]. Tasks that focus on
this problem include instruction guided navigation [4, 37, 42] and cooperative localization [24]. In
contrast with these tasks, we focus on an open-ended creative design task like Kim et al. [33] where
agents and humans can take actions collaboratively like Suhr et al. [59].

Language Learning from Interactions. Leveraging interactions with humans in the interest of
improved learning outcomes has been studied in a variety of settings. Interactive dialogue can be
used to bootstrap the capabilities of a semantic parser [7, 62], learn concepts from single examples
[71], narrow-down classification decisions during inference [70] or training [67], or improve visual
concept models in an online fashion [64]. Interactions need not be restricted to language: agents can
also infer programs directly from examples [45]. Notably, Shah et al. [53] defines tasks for learning
from human interactions in Minecraft. In our work, we use interactions to define new commands.
Our goal is to naturalize a programming language through user-provided redefinitions, as described
in Wang et al. [65]. We leverage a modernization of this approach presented in Karamcheti et al. [32].
However, unlike in these works, abstructions allow users to quickly define new object categories that
are context sensitive, enabling naturalization in a creative editing task.

3 Learning to Ground Language with Abstructions

We study whether making abstructions, i.e., well-formed assumptions about label-conditioned gener-
ative models and their associated constraints, available to a semantic parsing framework can enable
precision in specifying new commands without compromising the flexibility to work across contexts.
To this end, we focus on an open-ended, creative house modification task in Minecraft. Users are
able to specify any desired modifications to a given home through natural language requests to a
virtual agent. When the virtual agent does not know or understand a given request, users have the
opportunity to define new requests in terms of utterances the virtual agent already understands.

System Overview. At the start of interaction with users, the agent has access to a core semantic-
parsing framework (Figure 2a), capable of building and destroying various house parts. We in-
troduce abstructions (Figure 2b) into the Build() operation of the semantic parser by training
label-conditioned generative models of next block placement and creating a set of user controls—
number of blocks placed, build prompt, and location—that affect the quality and meaning of generated
blocks. As users supply the agent with new instruction-program pairs, online parser updates (Fig-
ure 2c) are made through an alternative framework that relies on similarity search over sentence
embeddings.

3.1 Motivating Examples

We motivate our design by describing two examples of user-defined instructions and how they are
enabled by our system. These are also illustrated in Figure 1.

Instructions from Compositions. The most common form of user-defined instruction is a compo-
sition of known instructions. For example, “make the house taller” decomposes into the following
steps: “remove the roof”, “build a huge wall”, and “build a large roof”. Because we handle each
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Figure 2: Overview of control flow when interacting with agent.

of these sub-instructions with generative models, as opposed to a single reference object, we can
capture the ambiguity in each instruction and generalize better across homes. By contrast, if we
were to compose two different objects defined under the framework presented by Wang et al. [65]
or Karamcheti et al. [32], those objects could not adapt to a given scene because they have a fixed
reference. Additionally, new object categories can also be created from compositions of commands.
For example, to “build a second story” users may instruct the agent to “remove the roof, build a huge
wall on top of the house, and build a roof on top of the house”.

Instructions from Constraints. The benefit of abstructions is most evident in the second form of
user-provided redefinitions. By placing constraints on the inference procedure of generative models,
users can synthesize new object categories without requiring training a new model. Consider the
command “build a skylight”, which can be defined as “build a tiny window on top of the roof”. The
parser invokes the generative model for “window” to infer two block placements starting from a
location on the roof. Another example is “build a rooftop patio”, which could be constructed with
the command “build a fence on top of the roof”. Again, the constraints define the meaning of the
primitive in context. In this case, the generative model for “fence” doesn’t stand in for a fence or a
subcategory of fence, but instead it is used for its likeness to a railing. Here, the program defines the
meaning of the object and that meaning is passed directly as an instructional example to the agent.

3.2 Core Semantic-Parsing Framework

In the general case, we assume that we have access to a parser over a set of core instructions as well as
a semantic segmentation and a sequential generation model. We build our virtual agent on top of the
CraftAssist framework [22, 55]. This software provides the tooling for creating Minecraft sessions
and the virtual agent, including the semantic parsing system and semantic segmentation module that
make up the core parsing framework. These assumptions are highly practical, even in more natural
settings. For example, a parser capable of decoding only the most straightforward core programs can
be trained entirely through augmented data [41] or through a very small set of annotated utterances.

Core Parser. We use the parser introduced by Srinet et al. [55], which directly trains a BERT-based
neural semantic parser on high-level Minecraft actions. Although the parser is capable of interpreting
commands about a variety of high level tasks, we focus on Destroy() and Build() actions. The
Destroy() action operates over a fixed collection of object categories, which are segmented from
the scene as described in the next paragraph. For the Build() operation, the parser is also capable of
interpreting qualitative or quantative descriptions of length and relative location.

Segmentation for Destroy() Operations. We use the semantic segmentation module provided
by [22] to infer objects to destroy from the current house state. Unlike our Build() operation, we do
not use user-specified constraints to steer the inference procedure of the Destroy() action, although
this would be an interesting direction for future work.
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3.3 Abstructions for Build() Operations

We replace the Build() action that is native to the CraftAssist framework with abstructions: a set of
constraints on the inference procedure of a label-conditioned generative model that can affect the
quality of generation and meaning of the primitive in context.

Although we describe a specific instantiation of abstructions, any generative model and set of
constraints could be integrated into a semantic parser for the same purpose. In the general case, we
assume that we have access to a parser, ψ, that infers constraints and labels, c, from utterances, u.
The inferred label indexes into a library of fixed parameters, θc, which condition the generator. The
user can also provide direct interventions to guide the generation process. Each of these components
is visualized in Figure 2.

In our setting, we use a sequential block placement model as our generative model and a neural
semantic parser trained on high-level Minecraft actions for ψ. However, any set of generative models
that can support these constraints and that sufficiently cover the set of visual primitive concepts for a
given task could be used as abstructions. Bau et al. [9] is one compelling example in the domain of
image editing. Our interventions take the form of prompts: users may optionally supply the agent
with a structure to seed the generation process. Finally, we only handle constraints on location and
length.

Label-Conditioned Generative Models. To generate label-conditioned block placements, we
adapt the VoxelCNN model presented in Chen et al. [12]. Given a 3D patch of a scene with block
type information and a global view with occupancy information, VoxelCNN predicts next block type
and placement. The original model was trained to generate complete houses on a dataset of 2,500
homes. We use voxel-level semantic segmentation labels to fine-tune VoxelCNN models for the
labels: balcony, bed, bookcase, ceiling, column, deck, door, fence, floor, foundation, garden, grass,
ground, ladder, lights, patio, pillar, porch, railing, roof, stair, torch, walkway, wall, window, and yard.

Our fine-tuning runs for an additional 4 epochs and for each class we select the model with the best
performance on the validation set. We use the same train-val split as Chen et al. [12], but save 50% of
the validation set as our test set. Averaging across categories, we achieve a top-10 accuracy of 66.0%
and average 7.50 consecutively correct blocks. Performance by category as well as hyperparameters
and compute resources can be found in Section A.1. For the classes window and bed, we overwrite
block type prediction so that the agent gives predictable results. Window is hard-coded to predict
glass blocks and bed is hard-coded to predict bed blocks.

For our setting, a sequential model is a very beneficial design choice. Users are able to provide
interventions that strongly influence the outputs of the model so that concepts can be reused or
remixed. Users can also prevent compounding errors by calling the same generative model multiple
times. For example, if the direction of a wall is ambiguous, a user can instruct the Build() action to
be called several times, allowing for them to intervene upon error. Our selection of constraints are
motivated by these intervention opportunities.

Constraints and User Controls. We allow users to steer the inference procedure by providing
constraints on location and length and intervening to supply a prompt. Location and length can be
specified through natural language. If no location is specified, the agent asks users to specify a hint
for the generation process. At this time, the user can provide location and prompt suggestions.

• Location is the coordinate at which the generative procedure will start. If a user specifies
a location in their instruction, such as "on top of the roof", the coordinate location will be
resolved heuristically using tools from the original CraftAssist framework. Otherwise, the
starting coordinate is the direction of the user’s cursor is projected onto the nearest house
block.

• Length is the number of voxels sampled from the generative model. We map qualitative
descriptions of size to block types: tiny is 2 blocks, small is 5 blocks, large is 50 blocks,
huge is 100, and the default is 20 blocks. Note that this mapping is limited as qualitative
descriptions of size don’t adapt to category or to house size. It does however give users
much more predictable results when specifying commands.

• Prompt is a block structure that users can optionally provide when asked for a hint. Depend-
ing on the primitive that is being invoked, this could affect the block type predicted or the

5



Figure 3: Left. Expressiveness is measured as the sum of core commands (i.e., build or destroy a
reference object) and constraints each utterance refers to. Right. As users define more commands,
users rely increasingly on induced utterances to achieve their build goals.

final structure shape. The system does not memorize or retain information about prompts,
but this would be an interesting direction for future work.

3.4 Parser Updates Online

Users are able to define new commands with the following syntax:

def: new command; sub command 1; ...; sub command N

Below we denote the new command as u. Upon receipt of a user-provided definition, we retrieve
embeddings for each token of u. Denoting m as the sentence length, we have:

φ1:m = BERT(u1:m) (1)

Our BERT embeddings are provided by the HuggingFace Transformers [66] library. To achieve a
single sentence representation, φ, we apply an aggregation function across the token features:

φ = σ(φ1:m) (2)

We use averaging as our choice for σ. This method draws inspiration from Karamcheti et al. [32], but
does not utilize additions like added aggregation layers or lifted utterances as in our setting, changing
a reference object can substantially change the inferred program.

When new requests are received, the aggregated features of the request are cross referenced with a
nearest neighbor store before a parse is attempted. We use Facebook AI Similarity Search [30] as our
nearest neighbor store. For the scale of data we collect in our experiments, training a layer on top of
features for improved embedding quality is ineffective, so this essentially acts as a dictionary lookup.

4 Experiments

We show that over time, users rely increasingly on induced utterances and that the average utterance
becomes more expressive. We also evaluate the generalization performance of user-defined commands
with user surveys and qualitative examples.

4.1 Experiment Design

Our experiment ran in two phases: one qualifying task that introduced users to the agent’s capabilities
and limitations, and a creative build period where users could define new instructions, shared across
the entire user population. All of the data we present is sourced from the creative build period,
which was designed as follows. In each session, users enter a Minecraft server with the agent three
separate times and interact with a total of two different homes. In the first instance, the users have the
opportunity to test out any modification requests or new commands on the first home. In the second
instance, the users apply their desired modifications and new command definitions to the same home.
All of these modifications are specified through dialogue exchanges with the agent. Users are also
welcome to “clean up” the agent’s work, but many users chose not to clean up the agent’s block
placements. By creating two separate sessions with the same house, we allow users to explore the
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capabilities and weaknesses of the bot. In the third session, we instruct users to replicate all of their
modifications on a new, second home so that we can evaluate how well their re-definitions transfer.

During the creative build period, we explicitly told users that our goal was to teach the agent new,
expressive instructions. We also provided videos describing tips to get good results out of the
generative models and ideas about types of commands to define. The full set of instructions given
to users in both the qualifying task and creative build period as well as further design details are
provided in the appendix.

We hosted our experiments on Amazon Mechanical Turk and handled HIT management through the
EasyTurk wrapper [35]. Compute details for the AMT experiments are provided in Section A.2. Of
the 11 users who attempted the qualifying task, 8 passed and 4 chose to continue with the creative
task. All users were paid twelve dollars per hour, with bonuses reaching fifteen dollars per hour. Prior
to launching the the Minecraft server, users were notified that the data from their interactions will be
collected and were instructed not to share any personally identifying information. We also removed
their Minecraft username from the data we provide.

4.2 Naturalization

To evaluate whether naturalization still takes place when we introduce abstructions, we classify
every dialogue exchange that results in a Build() or Destroy() action (i.e., not conversational
exchanges like “hello”) as ‘core’, ‘induced’, or ‘unparsable’. Core utterances are actions that the
agent could complete successfully with the core parser alone. Induced utterances are commands
that were defined by the user population. Unparsable utterances are commands that the agent could
not complete successfully. Examples include syntax or reference objects with which the agent is
unfamiliar. The agent can also fail to parse successfully because of computational issues unrelated
to its abilities, such as the segmentation model not inferring objects from the scene quickly enough.
These are still counted as unparsable. We only consider dialogue exchanges from the second and
third sessions of the creative build task. Note, we explicitly ask the users to test their redefinitions in
a new environment. However, we see a similar result for dialogue exchanges in the second session
only. Please see Section A.3 of the appendix for these results. We also treat new command definitions
at the time that they’re provided as the sequence of commands that define it. For example, we count
“def: make the house taller; remove the roof; build a huge wall; build a large roof” as three core
utterances, as opposed to one induced utterance.

Figure 3 shows the cumulative ratio of parsable, unparsable, and induced utterances over the course
of all user dialogue exchanges. Similar to Wang et al. [65], we see a steady increase in the proportion
of utterances that come from user-induced commands. However, we do not see the proportion of
induced utterances overtake core utterances. We suspect that this is because the core actions we
provide cover more modifications of interest within our setting. Unlike in Wang et al. [65], the users
do not need to start from single block placements. Over the entire course of naturalization, 27.7% of
utterances were induced.

4.3 Expressiveness

We define expressiveness as the length of the “program”, i.e., user-provided redefinitons, divided by
the length of the utterance that maps to it. For a core utterance, the expressiveness is one because the
“program” is simply the original command. The expressiveness of an induced command is the total
number of words or tokens in the commands that are specified in the definition. For example, “build
a skylight” has 3 words and is defined as ‘build a tiny window on the roof”, which has 7 words. So,
the expressiveness of “build a skylight” is 2.33. As with naturalization, we compute expressiveness
for the second and third sessions of the creative build task. We again treat new command definitions
as the sequence of commands in the definition.

Figure 3 shows that expressiveness increases over the course of the experiment, achieving an average
expressiveness of 1.42 by the end of our naturalization experiment. Some users define commands
with expressiveness below one. For example, one user defined the command “build an awning on
house” as “build a roof”, leading to an expressiveness score of .6. Presumably these redefinitions still
have value to users or are otherwise more natural because of the prompts they are able to provide.
Cases such as this could explain the dips in expressiveness across training. It also indicates that this
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Figure 4: Examples of home modifications generated from user commands. The top row shows the
original, unmodified home and the bottom row shows the result after the modification is applied. The
first and third columns are examples where the user defined the command. The second and fourth
column show the command applied to a new house.

Figure 5: Examples of user-provided redefinitions.

way of computing expressiveness, does not fully capture or describe the benefits that redefinitions
provide to users.

4.4 Generalization across Diverse Homes

We use user surveys and qualitative examples of command transfers to understand how well ab-
structions enable redefinitions across the second and third session of the creative build task. Upon
completing the task, 100% of users agreed that the command successfully transferred. Qualitative
results revealed strong variance in the performance of generalized commands. The discrepancy
between user ratings of generalization performance and visualizations of transfer performance are
likely due to ambiguity in the definition of a successful transfer.

In Figure 4, we show how well two commands generalize across homes. The command “build a wall
around the house” is defined as “build a wall; build a wall; build a wall; build a wall”. The agent
successfully builds walls around both homes. The command “make me a place to sit in the front yard”
is defined as “make me a place to sit in the front yard: make a fence around the house; make me a
place to sit down”. Both of these are themselves induced commands. In this case, the agent makes a
somewhat enclosed space and places two bed blocks, which are the small red blocks in front of the
home, as a place to sit down.

4.5 Examples of Commands Defined

We visualize a selection of the 38 total commands supplied by users in Figure 5. These show that
users significantly borrowed from other user’s commands. These examples also illustrate some
weaknesses of our design. Not all commands generalize to different forms of homes; “destroy all”

8



only works on homes with that exact list of objects. Users also relied heavily on the ability to specify
location hints from their cursor, which is why many commands don’t include qualitative descriptions
of location.

5 Conclusion

In this work, we present the idea of neural abstructions: a set of abstractions around generative
models and associated constraints that make it easier for users to develop precise commands that
generalize across contexts. Our results show that abstructions have the potential to bring naturalization
frameworks to a broader set of creative build tasks than was initially shown in Wang et al. [65]. Due
to cost constraints, we could not run our experiments on a larger user population, but wish to in future
work.
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A Appendix

A.1 Generative Model Details

All models are trained on a TeslaK40c through an internal cluster. We compared models across the
following hyperparameters: with and without block embeddings, on a feature dimension size of 16,
32, and 64, on placement histories of size 1 and 3, with learning rates of .1 and .01, and on batch
sizes of 32 and 64. Our final model uses block embeddings and has a feature dimension size of 32,
history length of 3, learning rate of .1, and batch size of 64.

Our model’s block placement prediction performance across categories is depicted in Table 1.
Accuracy at 10 denotes the accuracy of block placements within the first 10 predictions of the
model. CCA Average is the average consecutively correct block placements averaged across home
completion amounts of 10%, 25%, 50%, 75%, and 90%. These metrics are adopted from Chen et al.
[12].

Table 1: Fine-tuned VoxelCNN performance across object categories

label Acc@10 CCA Avg.

floor 0.83 11.28
roof 0.84 10.82
foundation 0.76 10.41
wall 0.78 11.02
walkway 0.66 9.56
ceiling 0.81 10.07
balcony 0.73 8.86
stairs 0.41 8.36
patio 0.79 8.10
porch 0.71 8.31
deck 0.71 8.31
pillar 0.65 7.86
window 0.84 8.08
lights 0.42 7.31
column 0.59 7.17
door 0.51 6.29
ground 0.64 7.25
torch 0.30 6.79
railing 0.79 5.56
fence 0.79 5.45
grass 0.62 4.62
bookcase 0.63 4.07
garden 0.51 3.43
yard 0.51 0.95

A.2 Naturalization experiment

Our data collection occurred in two stages: we hosted a qualifying task, during which users were
instructed to follow a tutorial video to familiarize themselves with the agent, and the main experiment,
which was an open ended house modification task. For each task, we walked users through instructions
on Amazon Mechanical Turk (AMT) and then directed them to a website, which launched a Minecraft
server for them to connect to. The AMT instructions and server instructions for the qualifier are in
Figures 6 and 7. The AMT instructions and server instructions for the main experiment are in Figures
8 and 9.

We pre-populate our nearest-neighbor store with the commands defined in the qualifying task and
in the tutorial videos. This includes “make the house taller”, “build a skylight”, and “make me a
place to sit down”. Each house is randomly sampled from the test split we use for training the label-
conditioned generative models. We filter house candidates from the test split based on dimension
in voxels, so that the size terms apply well across different homes. We also remove homes with
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blocks that behave atypically, such as lava or water. This leaves us with 23 total homes from which to
sample.

We hosted the Minecraft server and agent on ECS instances. A new task is run on each launch with a
memory size of 8192 MiB and 4096 CPU units.

Figure 6: AMT qualification task description.

Figure 7: Server website for qualification task.

A.3 Naturalization and Expressiveness

To verify that the induced commands were not limited to the third session, where users are explicitly
asked to repeat defined commands, we plot naturalization and expressiveness results from just the
second session in Figure 10.
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Figure 8: AMT main experiment task description.

Figure 9: Server website for main experiment.

Figure 10: Naturalization and expressiveness results over only the second session, where users are
not explicitly asked to repeat defined commands. When classifying utterance type, we use each
sub-command in a command definition.
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