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Abstract

Large Transformer-based models have shown great performance in sequence-to-
sequence tasks such as machine translation, text summarization etc. While these
models perform well on the original task they have been trained on, it is hard
to use them for a new but related task. We propose CASPer, a framework to
perturb the input-output behavior of the original pre-trained sequence-to-sequence
model. CASPer learns a perturbation parameter at test time to modify the behavior
of pre-trained model and generates samples that have target characteristics. We
apply this framework on a pre-trained text summarization model to alter a given
input text such that the generated text has a changed sentiment or other attributes.
In experiments, we show that CASPer effectively generates controlled text that
preserve the original content, are fluent, diverse and follow the steering provided
by the attribute model.

1 Introduction

Figure 1: Overview: CASPer takes an input text and
a perturbation parameter θ and returns a perturbed
text output. The loss Lsentiment provides a steering
signal, for instance, to make the sentiment of the
text negative. The backpropagation is used to update
the perturbation parameter θ.

Large Transformer-based language models
(Vaswani et al., 2017; Radford et al., 2019;
Lewis et al., 2019; Radford et al., 2018) have
shown great success in sequence-to-sequence
tasks such as machine translation, text summa-
rization etc. While these models perform well
on the original task they have been trained on, it
is hard to control them to modify their behavior
in order to perform a new but related task. For
instance, we would like to use a text summa-
rization model for generating summaries of a
given text while also controlling the sentiment,
style, or toxicity of the generated output.

There has been a rise in the interest in the task
of text perturbation. One such work is Check-
list (Ribeiro et al., 2020) which provides pertur-
bation goal at test time, for instance, to change
the sentiment of a given text. However, this is
achieved by using pre-existing templates and
dictionaries which require significant domain
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knowledge. Another related work is GYC (Madaan et al., 2021) which attempts to generate controlled
perturbations by making use of GPT-2 decoder. GYC adopts a two-step process where in the first step,
it reconstructs the given input text via gradient descent on a learnable parameter. In the second step,
it then fine-tunes this learned parameter based on the target attribute model to generate controlled
perturbations. However we find that GYC reconstructs well only on short and simple texts and its
success depends on the random seed text at the start of the gradient descent. Thus, in general, it
fails to perform reconstruction on longer and more complex texts. While GYC provides a useful
conceptual solution to the problem of controlled text generation without templates and dictionaries,
its lack of robustness hinders its wider use.

In contrast, our proposed model, CASPer, makes use of the auto-encoding framework of BART
(Lewis et al., 2019) to infer the representation of the input text rather than through gradient descent. In
this way, CASPer can accurately and reliably reconstruct the given input text via the GPT-2 decoder.
Through our model CASPer, we seek to control the output of a pre-trained sequence-to-sequence
model given an input text such that the output text possesses some target characteristics or simply
attributes as shown in Figure 1. To achieve this, we introduce a learnable parameter θ which is added as
a perturbation to one of the hidden layers of the pre-trained sequence-to-sequence model. We assume
that an attribute-model is available which provides a score on how well the target characteristics are
present in the output text. Hence, given an input text, we train the learnable parameter θ to control
the mapping from the input text to the output text with the objective of maximizing the score for
the target attributes. As shown in Figure 1, the input text having a positive sentiment class has been
modified to maximize target attributes, negative sentiment in this case. Crucially, our model is a
plug-and-play model which requires no task-specific training of the sequence-to-sequence model for
a given target characteristic. Our perturbation parameter θ is learned per-input text at test time to
maximize the target attribute in the output text.

In this work, we implement this idea using a pre-trained summarization model BART. Given an input
text, we seek to obtain a perturbation of the model so that target attribute is added to the original text.
In our experiments we take two kinds of attribute models for controlling the generations. The first is
a sentiment classifier and the second is a classifier which returns a true label when a named entity
(such as location, person or organization) are present in the generated text. In experiments, we show
that our generations are consistent with the control signals from the attribute models. We show that
our generations are fluent and effectively preserve content. Because our generation process uses a
GPT-2 decoder and samples the output text token by token, hence by drawing multiple text samples,
we can obtain diverse set of perturbations for the given input. We also show that our sample diversity
outperforms the baselines.

In summary, 1) We propose CASPer, a controlled plug and play perturbation framework which
takes an input text and perturbs it to generate target characteristics at test time, 2) We propose
an implementation which makes use of BART as a sequence-to-sequence pre-trained model thus
enabling fluent and diverse generations, 3) In experiments, we show that we outperform the baselines
in generating perturbed text on metrics that measure content preservation, fluency and diversity.

2 Method

In this section we describe our method for generating controlled text. For a given text x and an
attribute model p(a|y), the task is to generate K text perturbations Y = {yk}Kk=1 that maximize
p(a|y) for the target attribute a. In other words, our goal is to obtain samples from the true distribution
of p(y|a,x). To achieve this, will first approximate p(y|a,x) by learning a distribution qθ(y).
Although the true distribution p(y|a,x) is not available, using Bayes’ rule, we can write p(y|a,x)
to be proportional to the joint distribution p(y, a|x). We assume that this joint distribution can be
factorized as p(a|y)p(y|x) where p(y|x) shall be the BART text summarization model and p(a|y)
shall be the given attribute model. Thus we can write the true distribution p(y|a,x) ∝ p(a|y)p(y|x).
As p(y|x) is taken to be a pre-trained BART text summarization model, each token yt in the output
text is modeled auto-regressively as p(y|x) =

∏
t p(yt|y<t,x). With these, we get:

p(y|a,x) ∝ p(a|y)
T∏
t=1

p(yt|y<t,x).

The distribution that we learn, qθ(y), is also modeled auto-regressively as qθ(y) =
∏T
t=1 qθ(yt|y<t).

To learn the distribution qθ(y), we minimize the KL divergence between the true distribution p(y|a,x)
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Figure 2: Model Architecture of CASPer. The BERT encoder (shown in orange) takes the input text
and returns a representation of the input text as a set of vectors. These are provided to the GPT-2
decoder for cross-attention. At each step of decoding, the decoder returns an output hidden state
(shown as green circle). To this, we add a perturbation matrix (shown as blue circle). The perturbed
hidden state is then provided to the language model head to obtain the logits over the vocabulary for
sampling the next token. These logits are also provided to the attribute model for computing the loss
for steering the generation. The KL divergence between the perturbed logits and the unperturbed
logits is also computed to keep the semantic content of the generated text close to the original input
text.

and our learned approximation qθ(y). This KL divergence DKL(qθ(y) ‖ p(y|a,x)) objective can be
simplified as the following training loss:

−Ey log p(a|y) +
T∑
t=1

Ey<t
DKL(qθ(yt|y<t,x)||p(yt|y<t,x)).

Here the second term ensures that the content is close to that of the original summarization model,
while the first term steers the content towards the given target attribute a.

2.1 Transformer-based Implementation

In the framework that we introduced above, we implement qθ(y) by taking a pre-trained BART
(Lewis et al., 2019) summarization model with a learnable perturbation parameter θ. We choose
BART because it is a rich auto-encoding model that can represent complex input text x and return
samples of summaries y of the given input text. BART auto-encoding framework is implemented
using a BERT encoder and and GPT-2 decoder. To implement qθ(y), we would like to perturb
and control the decoding process of GPT-2 part of BART. For this, our learnable parameter θ is
decomposed into a learnable parameter θt for every token position t. This is implemented similarly
to PPLM (Dathathri et al., 2019) in which θt is added to the output layers of the GPT-2 decoder.
In this way, we get a steerable auto-encoding model, CASPer. We describe the detailed process of
generating text with this model below.
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Algorithm 1 CASPer
Input Text x, Output text length T , Target attribute value a, Attribute Classifier Model fattribute(text) Generated
Sample y

# 1. Initialize perturbation as a learned parameter
θ = {θ}Tt=1

# 2. Encode input text using BART encoder
e = fBERT(x)

# 3. Initialize a start token
y0 = start_token

# 3. Run decoder auto-regressively token-by-token
for t = 1 to T do

# 3.1 Get output hidden state from GPT-2
ht = fGPT-2(e,y<t)

# 3.2 Add perturbation vector to the output hidden state
h̃t = ht + θt

# 3.3 Obtain next token logits from the perturbed hidden state
õt = fLM(h̃t)

# 3.4 Obtain next token logits from the unperturbed hidden state
ot = fLM(ht)

# 3.5 Compute KL divergence between perturbed and unperturbed logits
L = L+DKL(õt||ot)

# 3.6 Sample the next token from the perturbed distribution
yt ∼ Categorical(õt)

end for

# 4. Compute Attribute-Based Loss for Steering
L = L+ CE(a, fattribute(y1:T ))

Given an input text, an attribute model and a target attribute label value a, we first initialize pertur-
bation θ as a learnable parameter. Next, we encode the input text using the BERT encoder fBERT of
BART and obtain a encoding e of the input text. This is then provided to the GPT-2 decoder fGPT-2
along with a start token y0. The GPT-2 then generates the text auto-regressively. At every step t
in this auto-regressive generation, we get an output hidden-state ht from the GPT-2 decoder. We
add the perturbation θt to this hidden-state to get a perturbed hidden state h̃t. We use this perturbed
hidden state to get log-probabilities of a categorical distribution õt to sample the next token. Using
this categorical distribution we then sample the next token. Simultaneously, we use the unperturbed
hidden state ht to directly compute the unperturbed next-token log-probabilities ot. We shall use
the unperturbed log-probabilities to evaluate the KL term of our learning objective which ensures
that the perturbed text has a content that is close to the original text. Formally, we compute the KL
between perturbed and unperturbed logits as DKL(õt||ot). The loss function for our BART-based
implementation for each input text x can be described as follows :

L =

T∑
t=1

DKL(õt||ot) + CE(a, fattribute(y1:T )).

The detailed algorithm is shown in Algorithm 1. In practice, we run this controlled generation process
as a batch hence generating K samples in parallel on GPU. Because the sample of the generated
text y1:T is discrete and not differentiable with respect to sampling logits, we use REINFORCE to
propagate the learning gradient to the model from the second term of the learning objective.
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Model Masked
LM CheckList CASPer

Content
Preservation

YELP 0.070 0.141 0.169
IMDB 0.091 0.193 0.165

Perplexity YELP 250.42 342.97 136.97
IMDB 230.90 312.48 205.88

BLEU-4 YELP 0.903 0.530 0.120
IMDB 0.9027 0.909 0.102

Table 1: Comparison between models on the YELP and IMDB dataset. The model used for steering
is a pre-trained sentiment classification model.

3 Related Work

The task of generating controlled perturbations has been well studied in literature. (Hu et al., 2017)
propose a model aims to generate plausible sentences conditioned on representation vectors with
semantic structure. Another work (Ye et al., 2020) focuses on generating perturbations, however
unlike the previous work (Hu et al., 2017), the conditioning need not be simply a class label. The
conditioning can be a data structure such as a table. The model is trained end-to-end similarly
to the objective of (Hu et al., 2017). PPLM (Dathathri et al., 2019) combine a pre-trained LM
with an attribute classifier to perform controlled language generation. The idea is to use the
attribute classifier to steer the text generation process without further training of any of the two models.

A recent work by Ribeiro et al., 2020 employs a tool Checklist which is one of the attempts to come up
with generalized perturbations. For generation, Checklist uses a set of pre-defined templates, lexicons,
general-purpose perturbations, and context-aware suggestions. Polyjuice (Wu et al., 2021) requires
paired dataset in the form of text and their perturbed versions for different control codes. Therefore
the mapping between text and perturbed version is learned through supervision. Another parallel
work Tailor (Ross et al., 2021) generates perturbations designed for different control codes by making
use of a combination of semantic roles and content keywords. And thereby require supervision for
different controls. In contrast, CASPer does not require any task-specific or control-code specific
training and can be used to work with different control code models given input text.
Another closely related work, GYC (Madaan et al., 2021) generates K text samples Y = {yk}Kk=1
given a text x and controlling condition that specify the scope of the generated text. In GYC, the
inference of latent representation of the input text with respect to a GPT-2 decoder is done directly
via gradient descent. This approach fails to achieve good inference for long and complex text. As
the inferred latent is inaccurate, the reconstructed text from the decoder often fails to preserve the
content of the original text. CASPer amortizes this inference process by introducing an encoder that
directly returns an accurate latent representation with respect to the GPT-2 decoder.

MiCE (Ross et al., 2020) proposes a technique to generate counterfactual explanations which are
human interpretable and user-centric. They fine-tune T5 to generate counterfactual text and use them
as explanations of the model but lack feature-attributions. Another work (Ross et al., 2021) tries to
generate perturbation with semantic controls but rely on specific templates derived using semantic
roles and labelling heuristics. CATGen (Wang et al., 2020) tries to generate attribute-specific text but
it requires task-specific training of sequence to sequence model.

4 Experiments

The goal of the experiments is to: 1) evaluate the ability of our model to generate text on long and
complex text and 2) evaluate how well the generated perturbations can act as data-augmentation
samples in order to make a downstream classification task performance more robust.
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Inputs Generated Controlled Perturbations

Steering Goal : To maximize the probability
of the positive class label with respect to a
pre-trained sentiment classifier.

Input Text: We know from other
movies that the writers can’t
solve problems, like this one.
The actors are also good.

Initial Label : Negative

We know from other movies that the actors are good but they
cannot help the movie. The premise was not too bad and is enjoyable.
New Label : Positive

We know from other documentaries that the acting was quite strong.
We can’t say the premise was good but the execution was good.
New Label : Positive

We know from other movies that the actors are good but they must
win over the fans. The premise was not too bad.
New Label : Positive

We know from other movies that the actors are good. They cannot
help the movie. The premise was not too bad.
New Label : Positive

Steering Goal: To make the sentence con-
tain at least one location named-entity.

Input Text: A wonderful little
production.The filming technique
is very unassuming- very
old-time-BBC fashion.

Initial State : No location named-entity is
present in the text

A wonderful first look at this film from the UK. The filming is
unassertive.
</s>io is also one of the best productions.
Location Named-Entity: UK

A wonderful little Theatre is an old-time BBC production, set in an
old
London apartment block. The film is set in London landmarks
Location Named-Entity: London

A wonderful little series about a BBC crew in Africa. Well-executed
by
the team who are experienced in film and rigging procedures.
Location Named-Entity: Africa

A wonderful little show about BBC’s wartime bombing of Libya
contributed by Peter Bradshaw in 1959.
Location Named-Entity: Libya

Steering Goal : To maximize the probability
of the positive class label with respect to a
pre-trained sentiment classifier.

Input Text: I had the terrible
misfortune of having to view this
"b-movie" in it’s entirety. All
I have to say is–- save your time
and money!!

Initial Label : Negative

I have the wonderful misfortune of having to view this New Girl in
it’s entirety.
To view it positively, I must open up and say.
New Label : Positive

I had the terrible misfortune of having to view this ẗransform into...
in it’s entirety.
It’s truly amazing how some programs remain..
New Label : Positive

I had the terrible misfortune of having to view this movie in it
endearing
ways. It’s a wonderful salute wives lenders acknowledge..
New Label : Positive

I had the terrible misfortune of having to view this in it’s full glory.
All I have to say is wow. everyone agrees.
New Label : Positive

Steering Goal : To maximize the probability
of the negative class label with respect to a
pre-trained sentiment classifier.

Input Text: For those who’d like
to see this movie? I’d say: go!
Without the narration it might be
a very good movie/documentary.

Initial Label : Positive

For those who’d like to see it I suggest that they see this movie
without narration. The movie isn’t a very good movie.
New Label : Negative

For those want to get to know the movie through its narration? I’d
say: go! Without the narration it might be a very bad movie.
New Label : Negative

Table 2: Generated controlled perturbations from the proposed model CASPer.6



4.1 Datasets

To focus on the ability of our model to deal with long and complex text, we evaluate the models on
the following data sets text.

1. YELP Sentiment Dataset. To evaluate how our model is able to change the sentiment of
the original text and achieve the target sentiment, we use the YELP sentiment dataset. This
dataset is also characterized by informal text which can be seen in realistic user inputs.

2. IMDB Sentiment Dataset. To further evaluate how our model is able to change the
sentiment of the original input text, we test on IMDB Sentiment Dataset. This dataset is also
characterized by long and complex text. Because of this, it also tests the model in how well
the generated text preserve important information of the original text.

4.2 Controlled Text Generation with Attribute Steering

We first evaluate the quality of our generated text with respect to the steering signal. We expect our
generated text to preserve the semantic content and syntactic structure of the input text while being
fluent and diverse as we steer the text towards the target attribute. The steering signal we evaluate in
this work is to make the sentiment of the target text from negative to positive. In the setting of long
and complex text, obtaining text with these characteristics has been challenging.

4.2.1 Baselines

To compare with state-of-the-art template-based methods relying on token substitutions via dictionar-
ies we compare with Checklist (Ribeiro et al., 2020). In comparison to this baseline, we expect ours
to generate more fluent and diverse text samples that is free from the restrictions of the pre-specified
templates. We also compare against Masked-LM (Devlin et al., 2018), which is a dictionary-free
approach but still relies on masking a specific token in the input text and and letting the model fill-in
the masked token. The randomness in this filling-in process leads to generation of counter-factual
samples. Hence this model generates only token-level substitutions and does not generate fluent
sentence-level text. We expect CASPer to address this limitation of purely token-level substitutions.
Lastly we omit the comparison with GYC as we found that GYC failed to reconstruct 98% of the
input text samples from our dataset and hence generated no output. Failure of this reconstruction is a
critical problem in GYC. GYC relies on a curriculum in which the reconstruction happens first and
then reconstructed text is perturbed for task specific generation.

4.2.2 Metrics

To assess the quality of generated counterfactual text we focus on evaluating content preservation,
fluency, diversity and syntactic similarity. We use the following metrics to measure the above
characteristics.

1. Content Preservation. By measuring content preservation, we assess the similarity between
input text and the counterfactual text samples. For this, we use the transformer model
proposed in (Reimers & Gurevych, 2019). While higher content preservation is desirable in
general, this metric alone does not provide the complete evaluation. Therefore for proper
evaluation, we will introduce a second metric that measures sample diversity.

2. Diversity. This metric evaluates how different are the generated samples from each other.
We find the BLEU-4 score between the input text and the generated text. Hence, if this score
is lower, then the generated counterfactual samples have a high diversity at the token level.

3. Fluency. Fluency of the generated samples is important to evaluate because the samples
must come from a distribution that the test model is likely to see when it is deployed. This is
computed by finding the perplexity score of the generated output. We take a GPT model for
computing the perplexity. Lower perplexity implies that the generated text is more fluent.

4.2.3 Quantitative Results

In Tab. 1 we note that in terms of content preservation, our model is competitive with rule-based
token substitution methods like Checklist. This shows that CASPer is able effectively preserve the
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content in its samples. In terms of perplexity score, CASPer outperforms the baselines achieving the
lower perplexity score. This shows that the samples generated by CASPer are fluent and plausible.
Lastly, in terms of BLEU-4 score, we note that our model again outperforms the baselines with our
generated samples achieving the lowest values of BLEU-4 score with the original input text. This
shows that our model indeed generates diverse samples with that have low token-level match with the
input text. Overall, this shows that CASPer is able to effectively generate samples that preserve the
original content, are fluent and diverse in comparison to the baselines.

4.2.4 Qualitative Analysis

In Tab. 2, we show samples of text generated by CASPer. We show two experiments. In the first
experiment, our steering goal was to take an input text and perturb it so that the probability of its
sentiment becomes large. The probability of the sentiment is estimated using a pre-trained sentiment
classification model. The initial label of the text was negative. On the right we note that CASPer has
successfully perturbed the text to change its sentiment label to positive. Furthermore, note that the
generated sample have good content preservation as all the samples talk about movies and actors.
Furthermore, the model makes some important changes to the content that result in a change in the
sentiment of the text. We also note that each sample is different from the other thus producing diverse
samples. Lastly, we note that the samples are fluent and plausible text samples.

In the second experiment, our steering goal was to take a sentence that does not contain a location
named-entity and perturb it so that contains a location named-entity. We see that CASPer produces
samples that contain a location named-entity tag. We also note that the named entity that the model
introduces are diverse and are used in a variety of contexts in the generated text. As before, the text
samples are fluent and preserve the content of the original input text.

Note that these samples clearly do not change the sentiment of the text and only introduce some
location entities. Because we expect the actual location (i.e. UK or Libya) should not be a causal term
in prediction of the sentiment of the text, these samples can act as effective samples for augmenting
the training data when we train a downstream sentiment model. While a model that is biased may
predict different labels based on the actual location token used, this kind of data augmentation will
regularize the model to be more robust to such changes which should ideally not affect the predicted
label of the test model.

4.2.5 Computational Cost

Furthermore, GYC is orders of magnitude slower requiring up to 200 or more iterations to generate
text and often failing to reconstruct the original text (∼98% text samples) while CASPer can generate
good quality perturbed text and converging in around 100 iterations. However, in our experiments,
we ran CASPer for 200 iterations to generate the samples for evaluation.

5 Conclusion

In this paper, we introduced CASPer, a plug-and-play counterfactual text generation framework.
We showed that our model can gracefully handle long and complex text. Our generated controlled
perturbations preserve the content of the original text while also being fluent, diverse and effective
in terms of the provided steering signal. We showed that samples generated by CASPer can act as
effective candidates for training data augmentation and improve the robustness of the target model
and preventing the target model from modeling spurious correlations between the target label and
non-causal aspects of the input text. As future work, we would like to investigate how well the model
can perform in low-resource domains.
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