
LUMINOUS: Indoor Scene Generation
for Embodied AI Challenges

Yizhou Zhao1∗ Kaixiang Lin2 Zhiwei Jia3 Qiaozi Gao2

Govind Thattai2 Jesse Thomason2,4 Gaurav S. Sukhatme2,4

1University of California, Los Angeles; 2Amazon Alexa AI;

3University of California, San Diego; 4University of Southern California

Abstract

Learning-based methods for training embodied agents typically require a large
number of high-quality scenes that contain realistic layouts and support mean-
ingful interactions. However, current simulators for Embodied AI (EAI) chal-
lenges only provide simulated indoor scenes with a limited number of layouts.
This paper presents LUMINOUS, the first research framework that employs state-
of-the-art indoor scene synthesis algorithms to generate large-scale simulated
scenes for Embodied AI challenges. Further, we automatically and quantita-
tively evaluate the quality of generated indoor scenes via their ability to support
complex household tasks. LUMINOUS incorporates a novel scene generation
algorithm (Constrained Stochastic Scene Generation (CSSG)), which achieves
competitive performance with human-designed scenes. Within LUMINOUS, the
EAI task executor, task instruction generation module, and video rendering toolkit
can collectively generate a massive multimodal dataset of new scenes for the
training and evaluation of Embodied AI agents. Extensive experimental results
demonstrate the effectiveness of the data generated by LUMINOUS, enabling
the comprehensive assessment of embodied agents on generalization and robust-
ness. The full codebase and documentation of LUMINOUS is available at: https:
//github.com/amazon-research/indoor-scene-generation-eai/.

1 Introduction

Embodied artificial intelligence (EAI) has attracted significant attention, both in advanced deep
learning models and algorithms [1, 2, 3, 4] and the rapid development of simulated platforms [5, 6,
7, 8, 9]. Many open challenges [10, 11, 12, 13] have been proposed to facilitate EAI research. A
critical bottleneck in existing simulated platforms [10, 12, 8, 5, 14] is the limited number of indoor
scenes that support vision-and-language navigation, object interaction, and complex household tasks.
This limitation makes it difficult to verify whether state-of-the-art methods generalize well to unseen
scenarios or whether they are specialized to a small number of room structures. Low cost, automatic
creation of large numbers of high-quality simulated environments is essential to resolve this question.

Here, we leverage advances in indoor scene synthesis to achieve the large-scale automatic creation of
simulated environments. Indoor scene synthesis has been a long-standing challenge for both computer
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Figure 1: Generated Indoor scenes. LUMINOUS scenes are evaluated quantitatively via EAI task
success rates and qualitatively via human judgements.

graphics and machine learning communities resulting in considerable recent progress [15, 16, 17,
18, 19, 20, 21, 22, 23]. To effectively utilize indoor scene synthesis for EAI, three key challenges
remain. First, for synthesized scenes to be useful in EAI, they must directly support household tasks
requiring object pick and place, state changes, and articulation. Second, the generated scenes with
randomized layouts must be natural—layouts that “make sense” according to human judgement—and
functional—layouts that match human use given the room type, such as Bedroom or Living Room.
Finally, any scene generation method must provide efficient access to massive, multimodal embodied
agent trajectory data, including low-level action sequences for task completion, egocentric image
frames during action execution, and language instructions.

We present LUMINOUS, a scalable, indoor scene generation framework to facilitate EAI tasks such
as vision-and-language navigation and language-guided task completion (Figure 1). We introduce
the Challenge Definition Format (CDF), which provides a user-friendly task specification of the
required objects, their relative spatial relationships, and high-level descriptions of downstream EAI
tasks to facilitate. We introduce Constrained Stochastic Scene Generation (CSSG) to generate an
arbitrary number of indoor scenes from the CDF specification. LUMINOUS produces scenes that
are well-aligned with human common sense and satisfy the CDF conditions, thereby ensuring that
the generated scenes are readily applicable to EAI tasks. In addition, we develop a task solver
to plan sequences of low-level actions for corresponding task completion. We also implement a
task instruction generation module to annotate trajectories with language instructions. LUMINOUS
generates large-scale multimodal trajectories for the training and evaluation of embodied agents.

LUMINOUS also contributes to indoor scene synthesis. Generally, scene generation lacks ground
truth for quantitative evaluation. Metrics like bounding box and angle prediction [20] and synthetic
classification [19] are not always correlated with the quality of a generated scene. By connecting
indoor scene synthesis to EAI, we propose measuring planner-based task success rate as an automatic
evaluation metric of the synthesized scene quality. Besides CSSG, LUMINOUS is compatible with
state-of-the-art learning-based indoor scene synthesis algorithms [24, 20]. We demonstrate that CSSG
with LUMINOUS qualitatively outperforms other learning-based synthesis methods (Section 4.1).

The main contributions of our work are threefold. First, we introduce a framework (LUMINOUS)
which serves as a standard and unified benchmark for indoor scene synthesis algorithms. Second, LU-
MINOUS generates a large number of randomized scenes that achieve competitive quality compared
to human-designed scenes in AI2Thor [6]. Third, the rendered scenes, along with the multimodal
trajectories, directly support typical EAI task completion to facilitate generalization research. Ex-
tensive evaluation on ALFRED [10], a language-guided task completion challenge, demonstrate the
effectiveness and scalability of LUMINOUS. Further, our evaluation with LUMINOUS scenes suggests
that existing, state of the art models for ALFRED may overfit to the hand-created scenes in AI2Thor.

2 Related Work

LUMINOUS builds on and extends research in indoor scene synthesis, simulation environments in
EAI, and language-guided task completion.

Indoor Scene Synthesis. In computer graphics, extensive research exists in 3D indoor scene synthe-
sis. Early work either used explicit rule-based constraints [25] or incorporated stochastic priors into
the generative procedure [15, 16, 17, 18]. Recent advances [19, 20, 22] utilize deep neural networks
to extract patterns from large-scale datasets [26]. While these data-driven approaches significantly
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Figure 2: The Luminous Framework. Scene definitions constrain generated scenes, which are
pragmatically evaluated via household task sampling and execution to ensure generated scene quality.

enhance the automation of the scene generation process, the resulting synthesized scenes are still rela-
tively simple in terms of object quantity and inter-object spatial relationships. Many works generate
scenes based on the natural representation of the scene graph [21, 19, 20]. Other lines of research
condition on the image [24, 27] or text [28, 29] representation of indoor scenes. The discrepancies in
the input representation of scene generation models and the diverse sources of data make it difficult to
compare and contrast the performance of different methods. To facilitate research in learning-based
approaches, LUMINOUS is designed to support end-to-end scene generation evaluation and a unified
rendering tool to accommodate the outputs of various approaches simultaneously.

Embodied AI Simulators. In the past few years, researchers have developed many simulation
environments [6, 7, 13, 5, 9] to serve as training and evaluation platforms for embodied agents.
These simulation environments propel research progress in a wide range of embodied tasks, in-
cluding vision-and-language task completion [10, 30], rearrangement [12, 7], navigation [9, 13],
manipulation [31, 32] and human-robot collaboration [5]. Recently, AllenAct [33] integrates a set of
embodied environments (such as iThor, RoboThor, Habitat [9], etc.), tasks, and algorithms thereby
facilitating the evaluation of the same model or algorithm across multiple EAI platforms. Many
EAI platforms are designed with sophisticated indoor scenes to perform embodied tasks. Platforms
such as iGibson [13], AI2Thor [6] can randomize materials, color, and small objects in the scene,
while the basic room layouts remain unchanged. To facilitate more robust and thorough evaluation of
embodied agents, LUMINOUS automatically generates indoor scenes with randomized layouts at a
large scale that readily support vision-and-language navigation and high-level object interactions. We
summarized the properties of LUMINOUS and most popular EAI simulation platforms in Table 9.

Language-Guided Task Completion. Among existing EAI challenges, we use ALFRED [10] as our
downstream exemplar task to evaluate the scene generation quality of LUMINOUS. ALFRED enables
agents to follow natural language descriptions to complete complex household tasks. ALFRED tasks
involve resolving vision-and-language grounding, affordance-aware navigation, and high-level object
interactions. Roughly speaking, there are two categories of approaches to tackling ALFRED. Initial
approaches learned end-to-end models that mapped language instructions into low-level actions
directly [30, 3, 34]. Subsequently, hierarchical approaches [4, 35] were proposed that enabled better
generalization and interpretation. However, those approaches are only tested in four indoor scenes
unseen during training time. Towards a more convincing evaluation, LUMINOUS generates an order
of magnitude larger number of scenes for better assessment of generalization and robustness.

3 LUMINOUS

LUMINOUS bridges the fields of indoor scene generation and EAI task completion. A well-designed
indoor scene needs to support different daily tasks. Accordingly, LUMINOUS generates an unlimited
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number of randomized layouts for EAI training and evaluation, while using the task success rate of
an oracle planner as an automatic metric to evaluate the quality of the generated scenes.

3.1 Framework Overview

The scene generation pipeline of LUMINOUS consists of four stages, as shown in Figure 2. First, in
the SCENE DEFINITION stage, users specify the required objects and, optionally, objects’ relative
spatial relationships. In the SCENE GENERATION stage, we propose a Constrained Stochastic Scene
Generation (CSSG) algorithm to synthesize scenes whose layouts are randomized while satisfying
user requirements and incorporating common sense knowledge to encourage scenes to be natural
and functional. Next, the TASK SAMPLING stage programmatically samples household tasks that are
executable in the current scene. Finally, the TASK EXECUTION stage plans a sequence of low-level
actions for the agent to execute to complete the task, and generates a series of natural language
instructions to describe the agent’s behavior.

3.2 Challenge Definition Format

We introduce the Challenge Definition Format (CDF) to concurrently support the description of indoor
layouts and the execution of household tasks (Figure 2). Learning-based indoor scene synthesis
approaches are restrictive for generating EAI simulated environments [36]. For example, these predict
absolute locations for meshes, voxels, or point clouds for objects. By contrast, humans naturally
understand the layout of an indoor scene in terms of the relative relationships among objects, such as
a coffee cup on a table, a bed against a wall, and a chair in front of a desk. Recent scene synthesis
algorithms such as Planit [19] and 3D-SLN [20] have demonstrated the effectiveness of using a
directed graph to store the relative positions of furniture. Based on this insight, we argue that relative
object relationships are more important than the absolute locations of objects for understanding the
functional and intrinsic utility of the room. Anecdotally, we feel specifying scene layouts through
relative object relationships is more flexible and user-friendly than absolute coordinates. In the
indoor layout description section of the CDF, we define the required objects that must exist in the
scene, including furniture, household items, and decorations, along with the relationship among
those objects, for example that a book is on a table. Figure 2 shows an example of the indoor layout
description. Each entry holds the name, type, or class of an item and may optionally have its spatial
relation relative to another object. In addition, similar to 3D-SLN [20], attributes such as color,
material, and size can also be attached to an entry to further describe the object.

The CDF also contains of a task definition section and a task execution script. Instead of being
specified by users, these sections can be automatically generated via the task sampling stage and
the task execution stage. The task definition section specifies the task to be completed within the
scene. The execution script lists out the action sequences for completing the task. Within the task
definition section, inspired by Planning Domain Definition Language (PDDL) [37, 10], the CDF
defines the initial state of the scene, comprising the position of the agent and the states of objects,
and the conditions for task completion, for example that a desk lamp is toggled on. Figure 2 shows
an example of an EAI task definition. The CDF can contain the execution script for the task in the
form of human-understandable (high-level) instructions and atomic (low-level) actions.

3.3 Constrained Stochastic Scene Generation

To stochastically generate high-quality indoor scenes satisfying the layout constraints defined in the
CDF, we propose a novel method: Constrained Stochastic Scene Generation (CSSG). Inspired by the
energy-based indoor scene synthesis method [18], CSSG generates scenes in a hierarchical manner,
which enables great flexibility to enforce constraints and to incorporate prior knowledge. First, CSSG
samples the room structure, such as walls, floors, and windows, from a set of pre-defined candidates.
Next, CSSG samples types, positions, and rotations of large furniture defined in the CDF. During
sampling, unlike human-centric indoor scene synthesis which learns the distribution of furniture
from data, CSSG generates the distribution of the position and orientation of furniture according
to relationships among furniture and room structure. Next, CSSG places objects in or on specific
furniture, for example placing a coffee machine on a dining table. Finally, CSSG optionally generates
decorations such as wall paintings and carpets.
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Figure 3: CSSG illustration. (a) explicit relationships defined in the CDF; (b) implicit relationships
added by LUMINOUS; (c) sampled scenes satisfying relationships defined in (a) and (b) with different
room structures.

Apart from the relationships defined explicitly in the CDF file, CSSG also integrates implicit rela-
tionships based on common sense. For example, if the CDF specifies "a bed is beside a reading
desk", CSSG adds an implicit rule "the bed is against the wall" when sampling the position of the bed.
When multiple relationships influence the position of an object, we use a set of predefined weights for
different types of relationships. Experimental results (Section 4.1) show that the rule-based CSSG
with predefined weights can reasonably balance human prior knowledge with the constraints specified
in the CDF thus generating meaningful and functional indoor scenes. Therefore, LUMINOUS adopts
CSSG as the default scene generation algorithm for EAI evaluation. We refer readers to Section A.2
in the Appendix for details on implicit relationships, types of relationships, and predefined weights.
Figure 3 illustrates the scene generation pipeline of CSSG and shows several sample scenes generated
by CSSG, with more in Appendix Section C.

3.4 Automatic EAI Task Sampling and Task Execution

Another challenge of using traditional indoor scene synthesis for EAI tasks is the lack of logic inherent
to object interaction, state changes, and agent actions. It is unclear how to enable complex interaction
capabilities within the framework of prior scene generation algorithms. To enable consideration
of object interaction constraints, LUMINOUS is implemented on top of the interactive 3D platform
AI2Thor [6], which possesses 102 interactive object types, more than 2000 3D meshes, and most
importantly: physical interaction mechanisms. We seamlessly connect the high-quality indoor
scenes generated by CSSG and the sophisticated physical interaction logic provided by AI2Thor.
LUMINOUS can thus directly support many complicated EAI challenges, including but not limited to
ALFRED [10], Rearrangement [38], and RoboTHOR [39].

Given generated scenes, LUMINOUS can utilize the planner proposed in ALFRED [10] to sample
solutions to simulation tasks. Additionally, given the tasks, LUMINOUS can resolve and generate
appropriate scenes to support those EAI tasks. For details on task generation with ALFRED, see
Section 3.6. Note that the task generation in LUMINOUS does not rely on ALFRED challenges. With
the CDF used in LUMINOUS, we can easily sample an arbitrary number of simple tasks.

The task execution stage in LUMINOUS decomposes a household task into navigation and interaction
tasks. Navigation requires the agent to find an optimal route from one place to another while avoiding
collisions, which is achieved by a planner inside of LUMINOUS. Interaction often requires the agent
to trigger the state change of certain object. For example, "taking a book on the coffee table" can
be decomposed into the navigation part "go to a coffee table" and the interaction part "pick up the
book". LUMINOUS applies Dijkstra’s algorithm to get the shortest path for navigation, and AI2Thor’s
interaction mechanism to perform the agent-object interaction.

LUMINOUS provides two methods to generate natural language descriptions for household tasks
involving navigation and object interactions. The first method relies on a rule-based language template
to generate language instructions for different tasks (See Appendix Section B). The second method
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Figure 4: Sample AI2Thor and LUMINOUS scenes for EAI challenges. For kitchens and bath-
rooms, LUMINOUS keeps more parts of the room structures. See Appendix C for more details.

uses the Speaker model proposed in Episodic Transformer [34] that maps the low-level actions and
corresponding egocentric images into generated language task instructions.

3.5 Accommodating Learning-based Indoor Scene Synthesis

Apart from the energy-based approach (CSSG), LUMINOUS incorporates two learning-based indoor
scene synthesis methods, 3D-SLN [20] and Deep-synth [24], by training indoor-scene generators
from the 3D-FRONT dataset [40]. An obstacle that hinders the application of most learning-based
methods to EAI tasks are object model discrepancies between the indoor-scene dataset and EAI
simulators. LUMINOUS accommodates indoor scenes generated by 3D-SLN and Deep-synth by
matching model names, furniture sizes, and room shapes between 3D-FRONT and AI2Thor, thereby
providing a unified interface for learning-based approaches to train on the 3D-Front dataset and
generated scenes with AI2Thor assets. For details, see Appendix Section A.1.

3.6 LUMINOUS for ALFRED: A Comprehensive Example

We apply LUMINOUS to ALFRED, a benchmark for learning a mapping from natural language
instructions and egocentric vision to sequences of actions for household tasks. The goal is to
automatically generate additional data by LUMINOUS that shares exactly the same format as ALFRED
training and evaluation data.

Given a trajectory Ti from the ALFRED training dataset, we employ a task parser to deduce objects
and their relationships and save the scene conditions into the indoor-scene description part Ii of CDF.
Since each training scene in ALFRED supports dozens of trajectories {Ti}i=1,2,..., there may be some
conflicting parts in their scene description {Ii}i=1,2,.... For example, one task requires {Apple_1}
to be on the countertop; another says {Apple_1} should be in the fridge. We propose a merge

operator merge(I1, I2, ...)→ Î , where Î denotes the merged links in indoor-scene description file,
that tries to maximize common parts in the scene descriptions to tackle this problem. We use this
merge operation for sampling indoor scene layouts S by CSSG. Since ALFRED does not change the
positions of large pieces of furniture, such as fridges, sofas, and beds, the merge operator records the
requirements for large pieces of furniture and extracts the most common criteria for small objects
(e.g., apple, cup, and book). Figure 4 shows the comparison between AI2Thor original scenes and
LUMINOUS scenes generated to augment the ALFRED challenge.
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Method # Scenes, Functionality p-value vs. Naturalness p-value vs.
# Ratings (1-5) LUMINOUS (1-5) LUMINOUS

Generated
Deep Priors 50, 150 2.40± 1.40 ∼ .0∼ .0∼ .0 1.78± 1.06 ∼ .0∼ .0∼ .0
3D-SLN 50, 150 2.45± 1.43 ∼ .0∼ .0∼ .0 2.03± 1.35 ∼ .0∼ .0∼ .0
LUMINOUS 50, 150 4.134.134.13± 1.00 3.833.833.83± 1.11

Human AI2Thor 30, 90 4.23± 0.97 .416 3.68± 1.07 .308

Table 1: Human subjects’ ratings of the functionality and naturalness of Bedroom scenes. LU-
MINOUS is rated statistically significantly better than existing, state-of-the-art generation methods.

After obtaining an indoor scene S, we apply two techniques to sample tasks and trajectories. The first
follows the Fast-Forward Planner (FF-Planner) [10] and samples tasks and trajectories by sequentially
setting initial conditions, sampling task goals, and executing trajectories. The second follows the
original task design Di and directly applies the task execution component to generate the trajectory
T ′i . Locations of small objects defined by Ii must be resampled for each task before execution.

The FF-Planner is slower at sampling tasks because it experiences trial and error in different sampling
stages. We compare the efficiency of this method between sampling from AI2Thor original scenes
and from LUMINOUS-generated scenes in Section 4.1. The sampling efficiency indicates the quality
of the indoor scene. The second method samples trajectories much faster since it directly applies
the task design Di from original ALFRED training data which can be quickly solved by the TASK
EXECUTION stage in LUMINOUS. We apply this method to generate a large number of scenes for the
evaluation performance of different models in Section 4.2.

4 Experiments

We evaluate LUMINOUS both quantitatively and qualitatively. Our experiments focus on answering
the following questions: 1) LUMINOUS for indoor scene synthesis: Does LUMINOUS generate
high-quality scenes that are aligned with human common sense? 2) LUMINOUS for EAI: How well
do the generated scenes support downstream EAI tasks? 3) EAI task evaluation with LUMINOUS:
Can LUMINOUS generate indoor scenes that serve as reliable evaluation environments for EAI tasks?
In addition, we discuss the insights obtained from the evaluation of state-of-the-art language-guided
task completion models with larger set of unseen environments generated via LUMINOUS.

4.1 The Quality of LUMINOUS-generated Scenes

To answer the first two questions on evaluating the quality of LUMINOUS generated scenes from the
perspective of both human common sense and the capability of supporting EAI tasks, we conduct
user studies and oracle task success rate. We further demonstrate the great variety of tasks supported
on scenes generated by LUMINOUS.

User Studies: Following the evaluation protocol proposed in [18], we conducted user studies on
Amazon Mechanical Turk comparing the quality of Bedroom scenes generated by LUMINOUS with
two state-of-the-art learning-based approaches: Deep Priors [23] and 3D-SLN [20]. Generated scenes
are shown to users without any post-processing such as removing bad samples. Additionally, we
compared LUMINOUS scenes against human-designed scenes in AI2Thor [6]. Users were asked
to evaluate scene quality, with scenes given as top-view images (Figure 4), based on two criteria:
functionality and naturalness. Functionality describes how the room layout satisfies a human’s needs
for daily life. Naturalness indicates whether the room layout is realistic. Scales of responses range
from 1 to 5, with 5 indicating perfect functionality or naturalness. For every scene, we collect
three ratings per metric. The mean ratings and standard deviations are summarized in Table 1.
LUMINOUS achieves competitive performance with the human-designed scenes in AI2Thor [6]. We
ran six Welch’s unpaired, two-tailed t-tests to compare LUMINOUS scores with those of AI2Thor and
the learning-based approaches on both metrics. After a Bonferroni multiple-comparison correction,
we find that LUMINOUS scenes are rated statistically significantly more functional and natural than
scenes from both Deep Priors and 3D-SLN, the learning-based approaches, and not significantly
differently from human-designed AI2Thor scenes.

Task Success Rate: Our proposed framework for indoor scene generation aims to promote better
training and evaluation of the Embodied AI tasks. We show that, powered by the Constrained
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Task Success Rate
AI2Thor LUMINOUS
(Human) (Generated)

Pick & Place .33 .13 (∆-.20)
Pick Two & Place .10 .06 (∆-.04)
Examine in Light .55 .59 (∆ .04)
Clean & Place .18 .17 (∆-.01)
Heat & Place .19 .09 (∆-.10)
Cool & Place .07 .07 (∆ .00)
Stack & Place .05 .09 (∆ .04)
Overall .21 .17 (∆-.04)

Subgoal Success Rate
AI2Thor LUMINOUS
(Human) (Generated)

Heat Object .19 .09 (∆-.10)
Cool Object .07 .07 (∆ .00)
Clean Object .18 .17 (∆-.01)
Slice Object .11 .09 (∆-.02)
Put Object .15 .10 (∆-.05)
Toggle Object .55 .59 (∆ .04)
Pickup Object .22 .18 (∆-.04)
Goto Location .21 .17 (∆-.04)

Table 2: Left: Task Success Rate. For most task types, the loss in success rate between AI2Thor
human-created scenes and LUMINOUS generated scenes is less than 5%, and for some tasks success
rate improves. Right: Subgoal Success Rate. Multiple subgoals are carried out for each task. The
loss in success rate in LUMINOUS generated scenes is usually less than 5%, and sometimes improves.

Trajectories per Task Type
Split Scene Pick Pick Two Examine Clean Heat Cool Stack Overall

Seen AI2Thor (S) 46 33 29 27 34 38 34 251
LUMINOUS (S+) 226 167 236 210 163 202 201 1405

Unseen AI2Thor (U) 30 24 54 36 42 36 33 255
LUMINOUS (U+) 27 18 178 56 21 56 79 435

Table 3: Validation Trajectory Counts by Task Type. ALFRED trajectories were sampled from
both human-created AI2Thor scenes and generated LUMINOUS scenes to evaluate EAI agents.

Stochastic Scene Generation strategy, LUMINOUS procedurally generates indoor scenes that can
produce high-quality trajectories for downstream navigation and object manipulation tasks in a
comparable level of efficiency even to the manually-designed scenes provided by the ALFRED [10]
dataset. We adopt the same task sampling strategy as in the ALFRED dataset, which roughly samples
200 tasks for each of the 7 task types (Pick & Place, Stack & Place, Examine in Light, etc.) The
tasks designed in the ALFRED dataset involve long-horizon navigation and object manipulations in
indoor scenes and are very challenging such that even those sampled in the hand-designed scenes fail
to be solved most of the time by a carefully-tuned Planning Domain Definition Language (PDDL)
rule-based [41] motion planner. Here we present the task success rate for a given set of scenes,
defined as the percentage of tasks randomly sampled in the scenes that can be successfully solved
by a rule-based, oracle planner. To make a fair comparison, we use the same sampling strategy and
motion planner provided by the ALFRED dataset. As similar to the training fold in ALFRED, we
construct 108 scenes by using LUMINOUS (26 scenes for each of the 4 room types). We compare the
task success rate of these scenes with the rate of the manually designed scenes from AI2Thor [6].
Our scene generation algorithm is automatic, and does not leverage knowledge of the motion planner
in ALFRED that is tailored towards AI2Thor scenes.

Subgoal Statistics: Scenes generated by LUMINOUS support a large variety of (sub-)tasks introduced
as “subgoals” in the ALFRED dataset. Each task in ALFRED consists of several subgoals ranging
from navigation to object manipulations such as “SliceObject” and “ToggleObject”. In total there are
8 types of subgoals and we calculate the statistics of these subgoals in tasks sampled from scenes as
described above. See Table 2 (Right) for the comparison between LUMINOUS and AI2Thor. This
subgoal level evaluation further reveals appealing properties of LUMINOUS. For example, LUMINOUS
achieves 17% task success rate in the GotoLocation subgoal, which indicates the generated scene
has a comparable connectivity with human-created scenes in AI2Thor and the robot can move freely
across a large portion of scene using a simple planner that does not account for held-object collisions.

4.2 LUMINOUS as an EAI Evaluation Platform

We use LUMINOUS to provide two different settings to evaluate state-of-the-art inference models for
the ALFRED challenge. All simulated scenes, trajectories, and task instructions are generated by
LUMINOUS. In the first setting, we use the room structures (the shape of floor, wall, and ceiling) in
the unseen validation set of ALFRED, and then apply LUMINOUS to randomize the scene layouts
and sample the tasks and trajectories under the same room structures. For each of the four rooms’
structures in the validation unseen set, we sample four room layouts and dozens of tasks. For each task,
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ALFRED Inference Model
MOCA ET HiTUT

Task S S+ U U+ S S+ U U+ S S+ U U+
Pick .295 .131 .005 .429 .500 .227 .040 .381 .359 .314 .260 .259
Cool .261 .000 .070 .000 .532 .035 .010 .018 .190 .035 .046 .034
Stack .052 .000 .018 .000 .296 .025 .028 .000 .122 .065 .073 .038
Heat .158 .000 .027 .000 .458 .000 .074 .000 .140 .061 .119 .000
Clean .223 .000 .024 .000 .482 .129 .170 .109 .500 .229 .212 .232

Examine .202 .000 .132 .000 .426 .072 .070 .034 .266 .173 .081 .067
Pick Two .112 .011 .011 .000 .419 .034 .051 .000 .177 .096 .124 .111
Average .186 .022 .038 .021 .448 .078 .066 .048 .252 .147 .124 .090

Table 4: Success rate on ALFRED tasks across validation splits. S: ALFRED seen; U: ALFRED
unseen; U+ Unseen Plus via LUMINOUS; S+ Seen Plus via LUMINOUS. Note that all ALFRED
models, in both seen- and unseen-based layouts, suffer loss of performance when generalizing to
generated LUMINOUS scenes for nearly every task.

we sample one trajectory to solve the task. In total, we generate 16 indoor scenes and 435 trajectories.
In the second setting, we randomly take 10 room structures in the training set of ALFRED for each
room type (Kitchen, Living Room, Bedroom, and Bathroom). Then, with the 40 room structures, we
randomize one layout and dozens of tasks for each. The second setting produces 1405 trajectories for
evaluating EAI models, which is an order of magnitude larger than ALFRED unseen in terms of both
task numbers and scene numbers. Table 3 summarizes the number of trajectories for each task type in
ALFRED validation seen, unseen, and the two evaluation settings empowered by LUMINOUS.

With the aforementioned four test settings, we evaluate three top-ranked models for ALFRED
challenge: MOCA [30], Episodic Transformer (ET) [34], and HiTUT [4] on LUMINOUS validation
settings. We denote the first validation setting as Unseen Plus (U+) and the second as Seen Plus (S+).
For the validation performance of MOCA and HiTUT on ALFRED seen and unseen, we directly
report their performance described in the paper. For the experimental results of ET, we evaluate its
performance based on the checkpoints provided by the authors of ET.

In Table 4, we show the overall performance and per-task type’s for MOCA, ET, and HiTUT. First,
we found that the relative performance of the three models in our setting is generally consistent with
ALFRED’s overall generalization performance, where HiTUT achieves the best performance among
the three models, and ET outperforms MOCA. It indicates that the models that perform well in the
ALFRED challenge adapt to our randomized scenarios and tasks. However, comparing the evaluation
results in unseen environments (U vs U+), there is a notable drop in generalization performance
when we increase the number of test scenes from 4 to 16. This confirms that the current evaluation
in ALFRED might not provide "true" generalization evaluation and highlights the significance of
LUMINOUS for the embodied AI research. Second, we notice that the performance under S+ is similar
to ALFRED unseen (U) in terms of large performance drop compared to ALFRED seen (S), even
though the scenes and tasks generated by LUMINOUS share the same room structure (including walls,
windows, doors, etc.) with scenes in ALFRED’s training. The randomized layouts from LUMINOUS
that produce different locations of objects introduce extra difficulties for the models to accomplish
tasks. It is worth noting that the high success rate of Pick tasks is due to LUMINOUS place the object
in the edge of receptacles (e.g., table, shelf, sofa, etc.). This provides a broader range of areas for the
robot to pick up the objects and thus leads to a much higher success rate than other task types.

5 Conclusion

We introduced LUMINOUS, a framework to illuminate general indoor scene generation for EAI
challenges. LUMINOUS generates large-scale, high-quality simulated indoor scenes that are competi-
tive with manually designed scenes in terms of naturalness and their ability to support various EAI
tasks. Extensive empirical results on language-guided task completion challenges demonstrate the
effectiveness of LUMINOUS to serve as a reliable and useful EAI evaluation platform.
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A LUMINOUS

A.1 Details on incorporating Learning-based Indoor Scene Synthesis to LUMINOUS

As we shown in Figure 2, the overall structure of LUMINOUS mainly consists of three components.
First, we propose a unified representation of indoor scene processing, providing various interfaces
for data processing, making the original data in different formats required by different models: e.g.
RGB images, bounding boxes with object types, etc. After that, different data formats are used as
inputs to different models for training indoor scene generation models. It is worth noting that we
unify the model-generated scene formats again, allowing us to use the same scene rendering tools
to automatically visualize the scenes. Finally, we provide different testing interfaces to uniformly
evaluate the quality of various algorithm-generated scenarios.

Data processing
Since our ultimate task is to provide indoor scenes as experimental environments for Embodied
AI, the data we target should provide a full set of information about the indoor scenes: e.g., house
structure, furniture models, and object placement information. Luminous selects three data sources
for data processing: mesh information from 3D-FRONT [40], and game designs from AI2Thor [6].
In the data processing, we first unify the names of items in different datasets (e.g. picture = painting,
bedside cabinet = nightstand). The full list of unified furniture and object names are attached in the
appendix. Then we normalize the coordinated w.r.t. locations and rotations. We also normalize room
scales. Finally, according to different formats of the training data for different methods, we generally
provides three different data formats: RGB-D images, semantic segmentation, and bounding boxes
together with object types and rotations.

Scene Synthesis
Luminous provides some state-of-the-art algorithms for indoor scene synthesis. We chose Python
as programming language ,and Pytorch for deep learning. We have carefully referred to the source
code of these these methods. However, for the reason such as missing public training dataset, and the
compromise we have made for unifying data formats (e.g. double bed→ bed), the re-implemented
performance in Luminous for those methods may differ from the original one.

A.2 Constrained Stochastic Scene Generation

We consider the problem of indoor scene generation under certain constraints represented by text
descriptions [28] or scene graphs [20]. In our baseline, each constraint not only defines the type of an
object, but also optionally describes the object’s relationship with others in the scene. In detail, a
constraint ci provides the information for placing object i by defining its type oi (e.g. bed), and a set
of relationship with others Ri = {rel(i, jk)}k=1,2,..., where jk stands for another object in the scene
and rel(·, ·) specifies the relationship between two objects (e.g. bed beside window).

Given a set of constraints {ci}i=1,2,... and the room structure (the shape of floor, wall and ceiling), an
indoor scene is sampled from a sequential process of three layers. The first layer samples pieces of
furniture that represent the overall function of the room and can be placed directly on the floor, such
as bed, dinning table, and refrigerator. The second layer samples objects that are usually supported
by another piece furniture such as book, pen, and coffee machine. Finally, the third layer samples
decorations in the scene such as painting and carpet.

In each layer, we empirically defined the priority value q(i) as the order for placing furniture according
to object types. For example, we prefer to place desk before placing chair: q(desk) > q(chair).
Besides, we limit the constraints that can be represented by a direct acyclic graph (DAG) and resolve
the relationship between objects to ensure that when calculating rel(i, jk), we have q(i) > q(jk). For
example, if the text description says a desk is in front of a chair, it is resolved as a chair faces a desk.

When placing each object, we samples the position and rotation of the object by its explicit rela-
tionship with others {rel(i, jk))}k=1,2,... defined previously, and implicit relationship with others
{r̃el(i, jk))}k=1,2,... predefined heuristically from our prior knowledge. For example, humans are in
favor of pushing the bed up against the wall of a Bedroom (bed, (wall, against)).

Each relationship rel(i, jk) generates a vector field in space: each position p is characterized by
(sp,k, rp,k), where sp,k is the score of the point. si depends on the distance di between p and the
target object jk. Figure 5(a) shows different types of relationship and the scores deduced by the
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Figure 5: Illustration of how to sample the position of an object according to the type of relationship.
(a) Score functions for different types of relationship, depended on the distance between the sampling
position p and the target object jk. (b) Direction vectors suggesting the rotation rp,k of the object
being placed on the position.

relative distance. rp,k, suggesting the relative rotation of placing the object, depends on the direction
vector from p to its target jk the type of relationship. Combining sp,k with parameter wtype(rel(i,jk))

related only the type of relationship, we sample the position to place object i according to weighed
sum of scores among all relationship, and the rotation of the object at position p is defined by the
type of relationship which has the largest weight.

sp =
∑
k

wtype(rel(i,jk)) (1)

P (p|Ri) ∝ exp(−sp) (2)

rp = rp,k′ k′ = argmax{wtype(rel(i,jk))} (3)

A.3 Comparison between CSSG and advanced indoor scene generation algorithms

In Table 5, we summarize the properties of CSSG and other indoor scene algorithms. As the table
shown, the state-of-the-art scene generation algorithms use SUNCG dataset [26] as training , is not
currently not available. It is hard to reproduce the results from those approaches. In LUMINOUS,
we reproduce the learning based approaches such as 3D-SLN [20] using publicly available dataset
(3D-FRONT [40]) for training. We believe this could serve as first step to provide a unified benchmark
for comparing indoor scene generation algorithms.

Algorithm Scene graph
Inference? Constrained? RGBD

rendering? Dataset?

PlanIT (2019) X X X unavailable
Grains (2018) N/A N/A X unavailable

3D-SLN (2020) N/A X X unavailable
Human-centric (2019) N/A N/A X unavailable

Luminous CSSG X X X N/A
Table 5: Comparison of CSSG and state-of-the-art indoor scene generation algorithms. Scene graph
inference refers to the algorithm’s ability to infer the latent scene graph of the indoor scene. Some of
the algorithms support taking scene graphs as constraints. The dataset for training the indoor scene
synthesis model is missing due to legal issues.

A.4 Implicit relationships between furniture

We list the implicit relationships when sampling the position of the furniture. Basically, the relation-
ships can categorizes into two types: furniture v.s. room structure, and furniture v.s. furniture.
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High-level action Instruction candidates
GotoLocation go to, find, walk to
PickupObject pick up, take, carry

PutObject put, place
SliceObject slice, cut
CoolObject chill, cool
HeatObject heat, cook
CleanObject clean, wash, rinse
ToggleObject turn on

Table 6: Language template: mapping high-level actions to language instructions

• furniture v.s. room structure: (CounterTop, against, wall border), (TVStand, against, wall
border), (Sofa, against, wall border), (border, against, wall border), (Bed, against, wall
border), (Dresser, against, wall border),(Desk, against, wall border),(SideTable, against, wall
border),(FloorLamp, against, wall corner), (DiningTable, away from, wall border)

• furniture v.s. furniture: (Chair, face, Desk), (Stool, face, DiningTable), (CoffeeTable, beside,
Sofa), (DiningTable, away from, Sofa)

If multiple relationships influence the distribution of the sampling position of an object, we give the
weight coefficient as 2.0 if the relationship is from furniture v.s. room structure, and as 1.0 if the
relationship is from furniture v.s. furniture.

B Task Instructions Generation

Unlike ALFRED, LUMINOUS obtains the natural language as high-level instructions from an auto-
matic pipeline instead of human annotations.

We design a language template to generate natural language instructions corresponding to the
high-level instructions in ALFRED. Table 6 shows mappings from high-level action to language
instructions. The natural language instruction is generated as:

[instruction candidate] + [object name] + [attribute]

Where the attribute specifies the receptacle for PickupObject (e.g., pick up an apple in the fridge), or
the target location for PutObject (e.g., put a book on the table).

However, the language instruction for navigation can be too simple and vague if we just say go to
some place. We apply the Speaker provided by ET to generate task instructions, especially for the
navigation part. The training data come from the ALFRED dataset. The input of the Speaker is the
low -level action sequence (e.g. MoveAhead, MoveAhead,RotateLeft) and images from the egocentric
view the agent, and the output is a piece of natural language instruction.

(low level actions, images) −−−−→
Speaker

(language instructions)

We refer readers to ET [34] for model details and put the generated examples in Appendix C

C Illustration of ALFRED and LUMINOUS

In this part, we illustrate the details when we apply LUMINOUS for ALFRED challenge.

C.1 Task parser

The task parser is applied to deduce the indoor scene description Ii for an ALFRED trajectory Ti.
Specifically, the task parser would go through the low-level actions in Ti, and

• extract the action args as required objects from actions including GotoLocaiton, PickupOb-
ject, ToggleObjectOn, and OpenObject. For example, if the action args of GotoLocaiton is
DiningTable, the task parser put DiningTable into the list.
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Figure 6: Living rooms sampled by LUMINOUS

Figure 7: Bedrooms sampled by LUMINOUS

• extract the action args of PickupObject as scene constraints. For example, picking up an
apple on the fridge means that initially Apple is in the Fridge.

C.2 Indoor scene sampling

For room structures of living rooms and bedrooms, LUMINOUS only keep wall, ceiling, floor, window
and door. For room structures of kitchens and bathrooms, LUMINOUS further keeps CounterTop,
Sink, Cabinet, and Oven, and Bathtub. Figure 6, 7, and 8 plot the scenes of different room types
sampled by LUMINOUS.

C.3 ALFRED trajectories v.s. LUMINOUS trajectories

We performance side by side comparison between ALFRED trajectories and LUMINOUS trajectories
in Figure 9 and 10. We plot the scene layouts, initial camera images, images after task completion
and language instructions for both.

C.4 Hard task analysis: Heat & Place / Cool & Place

We notice the low success rate for two types of tasks: Heat & Place and Cool & Place in LUMINOUS
scenes. The Cool operation requires a fridge and the Heat operation needs a microwave. We compare
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Figure 8: Kitchens and bathrooms sampled by LUMINOUS

Figure 9: Comparison between ALFRED and LUMINOUS generated trajectories. Task name:
look_at_obj_in_light-AlarmClock-None-DeskLamp; scene name: FloorPlan301_physics; trial
id:trial_T20190907_174127_043461.

the layout w.r.t. the fridge and microwave between AI2Thor scenes and LUMINOUS scenes, and
we find a somewhat different set-up for them. Figure 11 compares the locations of the fridge and
microwave. Since AI2Thor scenes are manually designed.

• In the task sampling stage (Table 2), the FF-Planner samples task trajectories from ground-
truth knowledge of the environment and would not be influenced by visual discrepancies
between ALFRED and LUMINOUS.

• In the EAI evaluation stage (Table 4), the EAI agent takes the input as RGB images and
images look visually different between manually designed scenes and synthesized scenes,
making the agent harder to complete heat and cool tasks.

D Large-Scale Evaluation Experiments

In this section, we conduct an additional large-scale evaluation with respect to the number of scenes.
We generated 216 scenes with the same room structure as training scenes in ALFRED (including
walls, floor, and windows) but randomized layouts and objects as the evaluation environments for
ALFRED-like tasks. We summarize the statistics of our evaluation datasets and performance of
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Figure 10: Comparison between ALFRED and LUMINOUS generated trajectories. Task
name: pick_and_place_simple-Box-None-Sofa-205; scene name: FloorPlan205_physics; trial
id:trial_T20190907_214755_478301.

Figure 11: Different locations of the microwave and fridge in AI2Thor scenes and LUMINOUS scenes.
In AI2THOR, most microwaves and fridges are embedded in the structure of the room; in LUMINOUS,
microwaves are preferred to be placed on a countertop and fridges most likely locates in a relatively
open area. Such difference brings different visual experience to EAI agents.
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Challenge Navigation? Interaction? Language
understanding?

affordance/physics
understanding?

ObjectNav
(habitat, ai2thor) YES NO NO NO

Multi-On/Rearrangement
(habitat, ai2thor) YES PART OF NO YES

InteractiveNav
(iGibson) YES YES NO YES
ALFRED
(ai2thor) YES YES YES YES

Table 7: Comparison between ALFRED with other EAI tasks. Different simulators may have different
requirements to EAI agents including navigation (to navigate an agent from one place to another),
interaction (to interact with an object in the environment), language understanding (to follow language
instructions from users), and affordance or physics understanding (to gain some knowledge for the
affordance map in the scene).

three state-of-the-arts in Table 8. The second column presents the number of unique configurations
(including room layouts, small object locations) of tasks in each task type. The third column shows
the number of unique scenes/layouts (same room layout with different small object locations count
as the same scene). Comparing the results in Table 4 and Table 8, the success rate in S+ column
evaluated by 40 scenes and 216 scenes maintain the similar relative performance. Based on the
above observation, we further strengthen our conclusions obtained in Section 4.2 that LUMINOUS
can provide more robust and consistent evaluation results.

ALFRED Inference Model
MOCA ET HiTUT

Task # Trajs # Scenes S S+ S S+ S S+
Pick 1124 192 .295 .139 .500 .205 .359 .296
Cool 885 44 .261 .000 .532 .009 .190 .043
Stack 1002 126 .052 .002 .296 .028 .122 .058
Heat 786 54 .158 .000 .458 .005 .140 .061
Clean 923 98 .223 .000 .482 .109 .500 .232

Examine 1263 84 .202 .000 .426 .056 .266 .124
Pick Two 944 168 .112 .013 .419 .034 .177 .097
Overall 7074 - .186 .025 .448 .068 .252 .137

Table 8: Success rate on ALFRED tasks. # Trajs: number of unique task configurations; # Scenes:
number of unique scene layouts in each task type; S: ALFRED seen; S+ Seen Plus via LUMINOUS.
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E Dataset Examples

The dataset examples from LUMINOUS are shown in Figure 12 and Figure 13.

Figure 12: Dataset Examples. Automatically generated scenes, low-level actions, and language
instructions.
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Figure 13: Dataset Examples. Automatically generated scenes, low-level actions, and language
instructions.

21



F Related Work

LUMINOUS builds on and extends research in indoor scene synthesis, simulation environments in
EAI, and language-guided task completion.

Indoor Scene Synthesis. In computer graphics, extensive research exists in 3D indoor scene synthe-
sis. Early work either used explicit rule-based constraints [25] or incorporated stochastic priors into
the generative procedure [15, 16, 17, 18]. Recent advances [19, 20, 22] utilize deep neural networks
to extract patterns from large-scale datasets [26]. While these data-driven approaches significantly
enhance the automation of the scene generation process, the resulting synthesized scenes are still rela-
tively simple in terms of object quantity and inter-object spatial relationships. Many works generate
scenes based on the natural representation of the scene graph [21, 19, 20]. Other lines of research
condition on the image [24, 27] or text [28, 29] representation of indoor scenes. The discrepancies in
the input representation of scene generation models and the diverse sources of data make it difficult to
compare and contrast the performance of different methods. To facilitate research in learning-based
approaches, LUMINOUS is designed to support end-to-end scene generation evaluation and a unified
rendering tool to accommodate the outputs of various approaches simultaneously.

Embodied AI Simulators. In the past few years, researchers have developed many simulation
environments [6, 7, 13, 5, 9] to serve as training and evaluation platforms for embodied agents.
These simulation environments propel research progress in a wide range of embodied tasks, in-
cluding vision-and-language task completion [10, 30], rearrangement [12, 7], navigation [9, 13],
manipulation [31, 32] and human-robot collaboration [5]. Recently, AllenAct [33] integrates a set of
embodied environments (such as iThor, RoboThor, Habitat [9], etc.), tasks, and algorithms thereby
facilitating the evaluation of the same model or algorithm across multiple EAI platforms. Many
EAI platforms are designed with sophisticated indoor scenes to perform embodied tasks. Platforms
such as iGibson [13], AI2Thor [6] can randomize materials, color, and small objects in the scene,
while the basic room layouts remain unchanged. To facilitate more robust and thorough evaluation of
embodied agents, LUMINOUS automatically generates indoor scenes with randomized layouts at a
large scale that readily support vision-and-language navigation and high-level object interactions. We
summarized the properties of LUMINOUS and most popular EAI simulation platforms in Table 9.

Language-Guided Task Completion. Among existing EAI challenges, we use ALFRED [10] as our
downstream exemplar task to evaluate the scene generation quality of LUMINOUS. ALFRED enables
agents to follow natural language descriptions to complete complex household tasks. ALFRED tasks
involve resolving vision-and-language grounding, affordance-aware navigation, and high-level object
interactions. Roughly speaking, there are two categories of approaches to tackling ALFRED. Initial
approaches learned end-to-end models that mapped language instructions into low-level actions
directly [30, 3, 34]. Subsequently, hierarchical approaches [4, 35] were proposed that enabled better
generalization and interpretation. However, those approaches are only tested in four indoor scenes
unseen during training time. Towards a more convincing evaluation, LUMINOUS generates an order
of magnitude larger number of scenes for better assessment of generalization and robustness.

Simulator Layout
randomization

Small Object
randomization

Object material
randomization

Number of
scenes/rooms

Number of
objects

Habitat
(2020) N/A N/A N/A 120 N/A

Virtualhome
(2019) N/A N/A X 7(house) 357

threeDworld
(2021) N/A X X 100+ 1000+

iGibson
(2021) N/A X N/A 106(house) 1984

AI2Thor
(2021) N/A X X 227 2000+

Luminous X X X ∞ 2000+

Table 9: Comparison of LUMINOUS and existing embodied AI simulation platforms. Layout random-
ization specifies the simulator’s ability to change the furniture layout; small object randomization
refers to change the layout of items on an affordance such as table and countertop; object material
randomization changes the texture and color of an object.
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