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Abstract

We propose an interactive paraphrase generation system that accepts a variety of
user constraints imposed separately or in combination with one another. They
include different linguistic factors (surface words, syntax and semantics) and
different data shapes (scalar value, sequence and tree). These constraints are
integrated in a paraphrase generation process using an attention-based encoder-
decoder model trained and experimented on the ParaNMT-50M corpus. The results
show that the constraints are well respected by the system and that they allow to
improve the quality of the produced paraphrases 2.

1 Introduction

Paraphrase generation, i.e. the transformation of a sentence into a well-formed but lexically different
one while preserving its original meaning, is a fundamental task of Natural Language Processing
(NLP). Paraphrase generation systems are useful tools when users attempt to rephrase some parts of
a text [1]. It can also be applied to improve downstream NLP tasks, for instance by increasing the
training data with new examples of sentences [2] or by offering variation to the outputs of a given
model. Examples of such tasks are text simplification [3] or speech synthesis [4].

In most works, the objective of paraphrase generation is to fit a target domain/task/style (e.g., ‘Twitter’,
‘Shakespeare’, etc. [3, 5]). As opposed to these approaches, we focus on applications where the user
wants precise control on the generation process by constraining the desired linguistic parameters. To
do so, related work have proposed to enforce constraints on the paraphrase’s length [6] or its syntactic
structure [7, 8].

In this context, we propose a system that shows to what extent the constraint-sensitive paraphrase
generation paradigm can be extended. This system has the potentials for real-world use as writing
assistant. It can also be used in text simplification and summarization applications [6]. Namely,
our contribution is to consider, compare, and combine several types of user constraints, depicting
(1) various linguistic aspects (syntax, lexicon and semantics), (2) with different data shapes (scalar
value, sequence, tree), (3) obtaining either from the output or input sentence or both. For this
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Figure 1: Overview of our constraint-sensitive model.

purpose, multiple attention-based encoder-decoder models3 are trained following a unique consistent
architecture. The performance of the models is investigated across the different types of constraints
and their combinations through objective evaluations of the paraphrases, as well as by measuring
how often the user constraints are satisfied.

In the remainder, Section 2 details our generic model architecture while Section 3 introduces the
different types of constraints tested. Then, Section 4 describes the system in action. The evaluation
setup and results are presented in Section 5 and Section 6, respectively.

2 Constraint-sensitive Model

Given an input sentence X = [x1, ..., xTX
] and a set of constraints C = {Ci}1≤i≤n of target

characteristics, our goal is to generate a paraphrase sentence Y = [y1, ..., yTY
] that satisfies the

constraints. Each constraint can be either a single scalar value, i.e., the desired length, or can be
complex/structured data, i.e., a pattern to insert, a syntax tree, etc. In the paper, we refer to this
architecture as Constraint-sensitive Paraphrase Generation Network (CPGN).

Inspired by [2], we extend the usual encoder-decoder architecture to include several encoders, one for
the source sequence and one for each constraint to apply, as shown in Figure 1. For input sentences
and sequential constraints, each encoder relies on an embedding layer, then a bidirectional LSTM
layer, while it is limited to an embedding layer for scalar constraints. The decoder relies on a
unidirectional LSTM backed up by an attention mechanism for each sequential encoder. Finally, a
copy mechanism mixes direct information from the source sentence and from the decoder to decide
whether some source tokens should be simply duplicated.

Training Strategy CPGNs need constraints as one of the inputs. However, existing paraphrase
datasets only contain the source and the target sentence pairs. To train CPGNs based on a general-
purpose paraphrase corpus (ParaNMT-50M), first constraints are derived from each source-target pair
and then used in inputs.

3 Constraints

This section describes different types of constraints and how they are modeled in this work.

3.1 Length

The output sentence can be constrained based on a desired length, i.e., number of tokens, which is
directly represented as a single integer.

3As Egonmwan et al. have shown in [9] that the difference between transformer and recurrent neural
networks (RNNs) is not so big in paraphrase generation, we use RNNs to be able to compare with related works.
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3.2 Syntactic Structure

The syntactic structure of a sentence can be expressed as a parse tree where the internal nodes are
phrases and leaves are tokens. To constrain a paraphrase to follow a given syntactic structure, leaves
are removed and the remaining tree is linearized using a prefix-bracketed representation. To be
user-friendly, the syntactic constraint is relaxed by only keeping the few first top levels of the tree as
shown in Example 1. All items of the constraint sequence are mapped to an embedding space, and
then contextually embedded with a recurrent layer 4.

Input: you ca n’t just take her life and forget about
ours .

Constraint: ( ROOT ( SBARQ ( WHADVP ) ( SQ ) ( . ) ) )
Output: why do n’t you just take her life and forget

about ours ?

(Example 1)

3.3 Semantic Similarity

Given an input sentence, the goal is to generate a paraphrase with a desired semantic similarity. For
this purpose, we use BERTScore [11] which successfully incorporates semantic information behind
sentences [12]. For instance, Example 2 shows a pair of paraphrases where their semantic similarity
is only 80%. In practice, this similarity cannot be too low as this would break the definition of
paraphrases. Hence, in our training dataset, the BERTScore values only range from 0.65 to 1.5

Input: after all i saw , the idea of going back to
mom and dad depresses me .

Constraint: BERTScore Similarity = 0.8
Output: and my dad ’s gon na hurt me .

(Example 2)

3.4 Pattern of Desired Words

It is common that a user wants to include specific words in the output paraphrase e.g., replacing
difficult words with simple ones. For this purpose, we introduce inclusive pattern (pattern∈), where a
pattern of desirable words is provided to the network in the simple form of a regular expression. In
Example 3, we ask the network to paraphrase the input in a way that the words violated and ceasefire
appear in the output in this order. Here, asterisks (*) stem for “zero or more words”, and dollar sign
($) for “end of sentence”. Likewise, patterns can be asked to start at the beginning of the sentence
(not shown in the example).

Input: they ’ve broken the armistice
Constraint: pattern∈ = * violated * ceasefire $
Output: they violated the ceasefire

(Example 3)

3.5 Pattern of Undesired Words

Alternatively, users may want to discard some words that are in the source sentence but should not
appear in the output sentence. These constraints are named exclusive patterns, denoted as pattern/∈.
They are modeled and fed into a network in the same way as pattern∈.

3.6 Combination of Constraints

Finally, we study the possibility for the user to jointly take into account several types of constraints.
As stated in Section 2, all constraints are independently encoded and fed to the decoder as additional
input information.

4For the experiments, parse trees are provided by the Stanford parser [10].
5Let one note that a wider range could be considered by extending the corpus with poor quality paraphrases.

However, we decided here to stick to the original training data to propose a consistent experimental pipeline
across all the constraints.
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Figure 2: A screenshot of our system. For a given input sentence, the user can switch between
different tabs to explore constraints. In this example, the user chooses the ‘Undesired Words’ tab and
selects words policemen and jail to be excluded from the paraphrase. The output shows that these
words are replaced by cops and prison.

4 The System in Action

Our system takes the input sentence and allows user to explore the effect of each constraint on the
paraphrase generation. To begin with, the user is asked to enter an input sentence or randomly choose
from a pool of sample sentences. Then, the input sentence is tokenized, padded and passed to the
‘No-Constraint’ model to simply paraphrase without any constraint.

The user is then directed to the panel where, in addition to viewing the output of the ‘No-Constraint’
model, he/she can apply desired constraints. As Figure 2 illustrates, this panel includes a tab for
each constraint where the user can play with different values of it. For example, in this figure, the
user chooses the ‘Undesired Words’ tab and selects words policemen and jail to be excluded from
the paraphrase. By clicking on the Apply button, the constructed pattern/∈ constraint is passed to the
model along with the input sentence and the result is shown in the output field.

In a similar manner, in the ‘Length’ tab, the user is given a slider to choose the desired length.
Depending on the need to summarize or expand the input, the user can request a shorter or longer
paraphrase, respectively. In the ‘Desired Words’ tab, the user is supposed to choose one or two
words from the dictionary and determine whether they should appear in the beginning, in the end or
somewhere in the middle of the output from a combo box. Then, based on the desired words and
their position, the pattern∈ is constructed and passed to the model along with the input sentence.
The appearance of the desired words is indicated by a distinct color in the output. In the ‘Structure’
tab and to generate paraphrases with different syntactical structures, the user can select the desired
structure from the 6 most frequent top-level parse trees6 and modify the syntactical structure of the
output. In the ‘Semantic’ tab, the user can constraint the semantic similarity of the output with the
input in terms of BERTScore and in the range of 65% to 100% (See Section 3.3 for more details).
User is also able to impose length and pattern∈ together in the ‘Length & Desired Words’ as an
example of combined constraints.

6Hovering mouse over each tree shows an example as a tooltip.
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5 Evaluation Setup

We trained different models separately for each single type of constraints from Section 3 and
some combinations of them. To evaluate the performance of our system, we set up the following
experiments:

Reference-based Experiments To automatically assess the quality of constrained paraphrase
generators, we set up the experiments where the constraints are set such that the system targets
the reference. For example, if the length of the reference is 10, the network is asked to generate a
paraphrase with length 10 and the output is compared against the reference in terms of automatic
measures like BLEU.

Free Constraints Experiments To investigate how the system generalizes in a less controlled
environment, we explore a plausible range of constraint values, regardless of the reference. Thereby,
for length constraint, we test values from 5 to 40 for each input in the test set. For BERTScore, we
consider the values in the range of 0.6 to 1.0 with step 0.05. For pattern∈, we construct maximum 5
patterns by randomly choosing the synonym of input tokens7. For pattern/∈, we construct maximum 5
patterns by randomly choosing one or two input tokens. We extracted the most 10 frequent top-level
parse trees from the training set and generated paraphrases of each sample with these 10 parse trees.
Note that for these experiments, natural language generation (NLG) metrics cannot be computed
since no reference exists for each constraint. Only constraint satisfaction can be reported.

5.1 Dataset

All experiments are conducted on the ParaNMT-50M corpus [15] such that 49M , 12K and 100K
paraphrases were used for training, validation and test, respectively.

5.2 Baselines

Naive Systems: Naive constraint-aware systems are built by designing constraint-specific post-
processing steps. These steps are directly applied on the output of the No Constraint model. In the
case of length constraints, post-processing consists in inserting or deleting random tokens until the
target length is met. Regarding patterns, the presence (pattern∈) or absence (pattern/∈) of the regex
constraint is forced by replacing random tokens with pattern ones, or inversely.

Length and Syntactic Baselines We compare with LenEmb [6] that proposed to control the length
of output via the embedding of the remaining length and also with LRPE [16] that proposed to use
positional encoding to control the length of output8. In addition, we compare with SCPN [2] that
generates a paraphrase from full parse tree.

5.3 Evaluation Metrics

Constraint Satisfaction Metrics: The following mean absolute error (MAE) metrics are defined
to study how well the constraints are effectively satisfied in the outputs:

MAElength =
1

|N |
∑
N

∣∣∣∣ len(output)− lengthconstraint

lengthconstraint

∣∣∣∣
in which len(x) is the number of tokens in sentence x and N is the normalization factor.

MAEBERTScore =
1

|N |
∑
N

|BERTScore(input, output)

− BERTScoreconstraint |

MAEpattern∈//∈ = 1− # of matched patterns
# of constraint patterns

MAEtree [17] is computed based on evaluating the tree edit distance between the parse tree of output
and the desired parse tree.

7We used Word2Vec [13] and WordNet [14] to extract synonyms.
8Both of these works proposed to control the length in character level, however, ours works in word level.
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Table 1: Paraphrase quality (BLEU and BS(o,r), the higher the better) and MAEs (the lower the
better) for various types of constraints. MAEs associated with the system constraints are in bold. BS(o,
r) stands for the BERTScore between the output, i.e. the generated paraphrase, and the reference.
Models prefixed with ⋆ are based on the proposed CPGN architecture. "All types" includes length,
top-2 Parse Tree, BERTScore, pattern∈ and pattern/∈.

Constraint Model NLG metrics ↑ Mean Absolute Error (MAE) (%) ↓
BLEU BS(o,r) Length Tree BERTScore Pattern∈ Pattern/∈

None ⋆No-Constraint 30.0 92.2 22.2 12.1 4.8 72.9 52.03

Length
Naive Length 23.2 90.5 0.0 14.3 3.2 100.0 84.5
LenEmb [6] 26.2 91.0 12.2 13.7 3.9 94.2 61.7
LRPE [16] 29.4 91.6 10.7 11.6 3.7 59.1 46.3
⋆Length 31.6 92.7 ∼ 0.0 11.4 3.3 66.3 49.9

Syntax SCPN [2] 25.9 92.1 23.2 10.9 3.4 63.1 59.3
⋆Top-2 Parse Tree 30.7 92.7 18.7 10.8 4.7 60.0 48.6
⋆Full Parse Tree 52.9 95.5 1.7 2.5 3.8 38.8 33.4

Semantics ⋆BERTScore 31.0 93.2 20.4 11.5 3.2 64.2 48.9

Pattern∈

Naive Pattern∈ 25.8 91.1 22.9 16.9 4.1 0.0 0.5
⋆Pattern∈ 44.7 94.8 15.5 9.3 3.2 7.4 35.2

Pattern/∈

Naive Pattern/∈ 21.7 90.8 23.9 7.9 5.2 79.5 0.0
⋆Pattern/∈ 34.7 93.1 18.0 10.8 4.4 61.5 41.2

Multiple

⋆Length + BERTScore 31.9 93.9 < 0.1 11.1 2.6 62.5 46.8
⋆Length + Top-2 ParseTree 33.0 93.2 ∼ 0.0 8.3 2.6 57.1 42.9
⋆Length + Pattern∈ 46.6 95.2 ∼ 0.0 8.7 3.8 14.0 34.8
⋆BERTScore + Pattern∈ 45.6 95.1 13.0 8.8 4.0 21.8 33.5
⋆All types 47.2 94.8 2.7 8.8 3.8 11.3 26.6

Paraphrase Quality Metrics: We rely on the standard automatic NLG evaluation metric BLEU
[18]. BERTScore values between the output and reference are also reported to evaluate their semantic
similarity9.

6 Evaluation Results

As detailed in Table 1, this section reports paraphrase quality and constraint satisfaction when
targeting a given reference.

6.1 Constraint Satisfaction

The following comments on the main results w.r.t. constraints satisfaction (MAE columns).

Length is precisely followed. The minimum MAElength is obtained when length is applied as a
constraint. Figure 3a provides additional details regarding the requested (reference) length. The
y-axis shows the length of the produced paraphrase normalized by the requested length. It appears
that the model properly learns to generate the desired length even for long sentences.

The more structural information, the better the network follows it. To investigate syntactic
constraint satisfaction, full and top-2 level parse trees from the reference are compared. A significant
improvement in MAEtree is reported when the full parse tree is provided. Considering the top-2 levels
is much less efficient, but still outperforming the no-constraint baseline. This is because the top-2
levels are too generic to describe the desired changes.

Semantics can be controlled by BERTScore representations. Results in Table 1 show that
the highest semantic similarities with the reference are for the models based on the BERTScore
constraints. Likewise, it is interesting to highlight that BERTScore values come from a very limited
range of values, as shown in Figure 3b.

9A similar trend was observed for the results in terms of METEOR, ROUGE-L and GSM which we do not
report.
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(a) Length constraint satisfaction.
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(b) BERTScore constraint satisfaction.

Figure 3: Detailed constraint satisfaction for length (a) and BERTScore (b). Lines show the ratio
between requested and generated constraints, 1 meaning that they exactly match. Gray histograms
are the distribution of constraints in the training set. Details in Section 6.1.

CPGNs are able to include or remove patterns. The results show the success of generated
sentences in following the patterns. It also reveals that inclusive patterns are more informative than
exclusive patterns since they provide information about new tokens and their order.

Combination of constraints is challenging for the network. Finally, Table 1 reports that CPGNs
are able to combine constraints to achieve better results which come from cooperation or compromise.
For instance, in ‘Length + BERTScore’ model, MAEBERTScore improves from 3.19 to 2.58 while
MAElength remains almost unchanged. In this case, the information about the target length guides the
system to follow the semantic constraint. The compromise case occurs when each isolated constraint
has already achieved very good results on their respective domains. For instance, in ‘Length +
Pattern∈’ model, MAEpattern∈ is worse than the pattern∈ only model. In parallel, MAEpattern∈ is better
than the length only model. Hence, the system selects a compromise between the two constraints.

Results of Free Constraints Experiments To complement the analysis of CPGNs, we study what
is happening when free constraints—which are not derived from the target reference—are explored
(See Section 5 for more details.). Results in Table 2 show that scores stay close to the MAE values
reported in Table 1 but a little bit worse. Thereby, CPGNs are still able to follow the constraints even
with a larger range of values, including when constraints are combined.

6.2 Paraphrase Quality

This section comments on Table 1 w.r.t. BLEU and BERTScore between output and reference to
prove that CPGNs do not blindly apply the constraint, but indeed produce good paraphrases.

Structural constraints, i.e. length and parse tree, improve the quality of paraphrases. Models
with length constraint outperform the no-constraint model and the length-aware naive baseline on all
metrics. It proves that providing the length constraint is not just a simple template for the network: it
learns how to properly use it to generate better paraphrases.

BERTScore constraints enhance semantic quality as well. About semantics, the quality of
the generated paraphrase is improved when considering the BERTScore constraint as the BS(o, i)
increases in comparison to the No-constraint baseline. However, targeting a given BERTScore is
difficult as words are discrete and changing one word inevitably changes the meaning.

Following patterns drastically improves the quality of paraphrases. As CPGNs are successful
in following the patterns, significant improvements are also reported in the quality of paraphrases.
The poor results of the naive approaches show that this improvement does not only come from the
valuable information of patterns, but also from extra knowledge learned and properly used by the
network. Applying pattern/∈ results in less improvements because giving information about which
words should be removed does not help to find the same substitution as in the reference.

7



Table 2: Constraint satisfaction as MAEs ( %, the
lower the better) for single or double constraints.

Constraints (c1 and c2) MAEc1 MAEc2

Length 0.1 -
Top-2 ParseTree 1.2 -
BERTScore 8.3 -
Pattern∈ 20.9 -
Pattern/∈ 30.9 -
Length + BERTScore 0.4 8.6
Length + Pattern∈ 0.1 20.9
BERTScore + Pattern∈ 11.2 18.6
Length + Top-2 ParseTree 0.8 1.9

Table 3: Results of the human evaluation (✗ = no
paraphrase, ∼ = ungrammatical paraphrase,
✓ = grammatical paraphrase).

Model ✗ ∼ ✓
No Constraint 0.64 0.17 0.19
Free Constraint CPGNs

Length 0.67 0.24 0.09
Top-2 Parse Tree 0.45 0.30 0.25
BERTScore 0.52 0.14 0.34
Pattern∈ 0.71 0.09 0.20
Pattern/∈ 0.69 0.10 0.21
Average 0.61 0.17 0.22

Combining constraints brings synergy. Among different combinations of constraints, we provided
the results of some that we find interesting from an application viewpoint. As shown in the last rows
of Table 1, combining two types of constraints is always beneficial in terms of paraphrase quality,
w.r.t. using one of each two in isolation.

Paraphrase Quality in Free Constraints Experiments Due to the lack of reference for each
constraint value in free constraint experiments, NLG metrics cannot be used. For this reason,
to measure the quality of free constraint paraphrases, a human evaluation is performed in which
workers are asked to rate a paraphrase pair < x, y > on the three-point scale from [19], where x
is the source sentence and y is the generated sentence. A value 2 in this scale indicates that y is a
grammatical paraphrase of x (i.e., meaning preservation and grammar are OK), while 1 means y is
an ungrammatical paraphrase of x (only meaning preservation is OK) and 0 means no paraphrase
relationship (none of them is OK). Table 3 shows that applying free constraints leads to acceptable
paraphrases in terms of quality, mostly in line with scores of the "no-constraint" model. Deeper
analysis reveals that syntax-related constraints, i.e., length and parse tree, spoil the grammar more
than the others. Second, the model mostly applies the patterns (inclusive or exclusive) with correct
grammar. Finally, paraphrasing with the BERTScore constraint is the most challenging of all.

7 Conclusion and Future Work

We developed a constraint-sensitive paraphrase generation system to integrate various types of
constraints which thus provide control on the desired output. The results show that this system is
effectively able to take into account these constraints—although this is with variable performance
according to the type of constraints—and that this can help to produce better paraphrases.
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